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PREFACE

In the middle of the 1970, the first oil crisis led to a new
development of polymer materials. To lighten vehicles
and to save energy, polymers replaced metals. However,
such a replacement necessitated an improvement of the
properties of existing polymers and the development of
new chemical structures. An important research activity
was generated in order to get a deeper understanding
of polymer properties—and, especially, mechanical
properties—and of their relations with the chemical
structure of the polymer chains.

Such a research benefited from very recent experi-
mental techniques such as 'H and "*C solid-state nuclear
magnetic resonance (NMR), molecular modeling, trans-
mission and scanning electronic microscopy, and atomic
force microscopy.

Since the 1980, our research group has been inten-
sively involved in this field. Our interest was mostly
focused on polymer dynamics and on local motions in
solid polymers, as well as on their consequences on the
plastic properties and fracture behavior in thermoplas-
tics and in elastomers. This research was performed in
close relation with the major European companies
involved in polymer materials. Over the years, our aca-
demic lectures and industrial trainings have dealt with
all these different aspects.

Several textbooks have already been published on
polymer properties. However, they are mainly oriented
toward specific behaviors such as viscoelasticity, frac-
ture, and toughening or toward materials like thermo-
plastics, thermosets, and elastomers.

The purpose of this textbook is to cover and empha-
size the relationships that can be established between
the chemical structure and the mechanical properties
of the various types of rigid polymers and elastomer

materials. These relations are extended to materials that
are either toughened by rubber particles or reinforced
by inorganic fillers. The optical and electrical properties,
the surface properties, the permeability, and the fire-
resistance are not considered.

For each topic under study, the experimental results
are described first; in a second step, they are analyzed
by taking advantage of the information obtained at the
nanomolecular or molecular scales by microscopies,
NMR, and molecular modeling, in order to achieve a
molecular approach of the properties.

The book is divided into five parts.

Part I (Chapters 1 to 6) is devoted to the necessary
polymer background, with a special emphasis on
polymer dynamics.

Part II (Chapters 7 to 10) deals with the concepts of
mechanical properties.

Part IIT (Chapters 11 to 15) describes the behaviors
of typical rigid polymers.

Part IV (Chapters 16 to 20) is centered on the tough-
ening of rigid polymers.

Part V (Chapters 21 to 23) focuses on pure and filled
elastomers and thermoplastic elastomers.

After these five parts we present some comprehen-
sive problems that have been the matter of course final
examinations.

This book is designed for graduate and post-graduate
students in Polymer Science. An increasing number of
graduates in Physics, Mechanics, and Materials Science
and Engineering have an interest in polymer materials:
In spite of their limited background in Polymer Science,
the book is intended to make them aware, without too
many difficulties, of the chemical dimension of the mac-
roscopic behaviors with which they are familar. The
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xxii PREFACE

book should also be of use to the academic teachers
who are looking for a unified and interdisciplinary
course on polymer mechanics and are interested in
selected case studies. We hope that the engineers and
scientists in industry and research, who are often search-
ing for predictive recipes on mechanical behavior, will
also find useful guidelines to rationalize their applica-
tion needs.

Finally, we would like to thank all our former stu-
dents who have enriched the different chapters of this
textbook and helped us to upgrade, year after year, our
original presentations by their questions, comments, and

suggestions. We also would-like to express our sincere
gratitude to our respective spouses, namely Monique,
Jean-Michel, and Monique, for the understanding and
support that they never failed to show during the prepa-
ration of this new book.

Jean Louis Halary
Francoise Lauprétre
Lucien Monnerie

Paris, France
October 2010
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