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Preface

This book focuses on recent developments in the field of meshfree approximation
using positive definite reproducing kernels, both from a theoretical and practical
point of view. Since positive definite kernels play an important role in many different
areas of mathematics, science and engineering, we hope to provide a broad view of
this field of research. On the one hand, we aim to speak to graduate students
and researchers in these diverse fields by providing each of them with at least
some content they are familiar with. And on the other hand, we hope that our
presentation of ideas from areas such as approximation theory, numerical analysis,
spatial statistics, machine learning, finance, and computing with MATLAB! will
enable our readers to take some of those ideas and apply them successfully to their
own work which may be housed in only one of these areas, or even an entirely
different area). Thus, we view this book as a hands-on guide for graduate students
in applied mathematics and engineering interested in understanding and applying
some of the most recent advances in kernel-based approximation.

Encouraged by the success of the format used for “Meshfree Approximation
Methods with MATLAB” (Volume 6 in this book series [Fasshauer (2007)]), where
a gentle introduction to the underlying theory of radial basis functions and moving
least squares methods was combined with many — relatively short — MATLAB
scripts that illustrated those concepts, we have decided on a similar format for
this book. We need to emphasize that this book should in no way be considered a
second (or revised and enlarged) edition of “Meshfree Approximation Methods with
MATLAB”. If anything, the present volume can be considered as a ”Volume 2”.
There is very little theory overlap between the two books, and the use of MATLAB
is considerably more sophisticated — due in part to some relatively recent additions
to the MATLAB software such as bsxfun, cellfun, and other related functionality.
Therefore, books developing the theoretical foundation for the use of kernels in
approximation theory (such as, e.g., [Buhmann (2003); Wendland (2005)]), spatial

IMATLAB® is a registered trademark of MathWorks® and is used with permission. MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discus-
sion of MATLAB software or related products does not constitute endorsement or sponsorship by
MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

vii
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statistics (e.g., [Stein (1999)]), statistical learning (e.g., [Steinwart and Christmann
(2008)]) or statistics in general [Wahba (1990)] remain of great importance.

The book is divided into two parts: Part I focusses mostly on background infor-
mation (and thus is probably a bit more theory-heavy), while Part II aims mainly
to illustrate the basic concepts in the context of applications.

We begin the first part of the book with an chapter that puts positive definite
kernels into perspective — both historically, as well as scientifically by pointing out
connections to and important resources in related fields such as analysis, approx-
imation theory, the theory of integral equations, mathematical physics, probabil-
ity theory and statistics, geostatistics, statistical or machine learning, and various
kinds of engineering or physics applications. Many of the fundamental concepts
we develop to support our view of positive definite kernels should be familiar to
beginning graduate students in applied mathematics and engineering: eigenvalues,
eigenfunctions, orthogonality, change of basis, Sturm-Liouville theory, Green’s ker-
nels, maximum likelihood estimation, Bayesian statistics, convex optimization, etc.
We do not aim to give any of these topics a thorough theoretical treatment — that
is what we provide many pointers and references for. Instead, it is our goal to
present these concepts as they relate to our work on positive definite kernels.

However, there are also new developments — or new interpretations of old ideas
— that we believe to be important for the field of meshfree approximation. The first
of these ideas is the use of different kinds of basis transformations to map the stan-
dard kernel basis to an alternate basis that is more advantageous for the application
at hand. In particular, this leads to the so-called Hilbert—Schmidt SVD introduced
in Chapter 13, a framework developed by the authors (motivated, however, by the
ground-breaking work of Bengt Fornberg and his collaborators) which opens the
door to stable computation with kernels in their often most accurate close-to-flat
state. By stable computation we mean not only the solution and evaluation of
interpolation problems, but also corresponding tasks for partial differential equa-
tions, as well as estimation of “optimal” kernel parametrizations via criteria such
a maximum likelihood estimation, cross-validation and minimization of the kriging
variance (or power function).

Another relatively new idea presented in this book is the notion of a designer
kernel, i.e., the construction of a kernel that is ideally suited for a certain kind of
application. We investigate several such approaches such as the use of the general-
ized Sobolev spaces of Chapter 8 (which are closely related to the Green’s kernels of
Chapter 6), or building a kernel from its eigenfunctions and eigenvalues (see, e.g.,
Section 3.9 and Chapter 7). This latter idea of working with a kernel in series form
— rather than in closed form — ties in nicely with the Hilbert—Schmidt framework.

A third important topic is the implementation of various types of kernels in
MATLAB. Chapter 4 lays the groundwork upon which later applications build upon.
We go considerably beyond the use of basic radial kernels (RBF's) in this book. In
particular, we consider the use of anisotropic kernels (both in radial and in tensor
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product form), zonal kernels, compactly supported kernels, space-time kernels, and
kernels given only in series form.

In Part IT we apply the fundamental concepts developed in the first part to
applications in data fitting, machine learning, the numerical solution of partial dif-
ferential equations, and finance. These concepts are illustrated in the context of
kernel methods with examples based on accessible “textbook” versions of MATLAB
code. However, our GaussQR library (discussed in Appendix D) contains “produc-
tion” versions of the code which is also accessible to the interested reader. Discussion
of context that deals with computational cost is spread throughout the book and
can be found by looking up this topic in the index.

This book contains 72 MATLAB programs, 76 figures, 11 tables, and more than
650 references). Some code requires one or more of the following MATLAB toolboxes:
Curve Fitting Toolbox™, Optimization Toolbox™, Statistics and Machine Learning
Toolbox™. All MATLAB programs printed in the text are contained — in an extended
version — in the GaussQR library. The code was developed and tested on MATLAB
R2015a, the most recent update prior to publication; however, earlier versions of
the code were also used on older MATLAB releases.

The manuscript for this book is based on the lecture notes for an evolving
course on Meshfree Methods taught by the first author every two years at the
Nlinois Institute of Technology. Moreover, many of the ideas presented in this
book emerged from discussions and research performed in IIT’s Meshfree Methods
seminar, a group co-organized by the first author together with Fred Hickernell.
We thank all the participants of this group for their contributions, discussions,
and willingness to be a sounding board for our ideas. However, special thanks
are due to Qi Ye, whose Ph.D. research on generalized Sobolev spaces formed the
basis for Chapter 8, and to Fred Hickernell, who inspired us with many insightful
comments and ideas, some of which found their way into this book (such as the
Chebyshev kernels of Section 3.9.2 and some of the fundamental insights on kernel
parametrizations presented in Chapter 14).

Thanks are also due to Bengt Fornberg and Natasha Flyer for welcoming the
second author to their research seminars at CU-Boulder, as well as his colleagues
at UC-Denver, most notably Jan Mandel, Loren Cobb and Troy Butler. We thank
MathWorks and Naomi Fernandes at their book program for providing us with a
complimentary copy of their software and for helping us with some issues that arose
during beta-testing of the latest release. Finally, many thanks are due to Rajesh
Babu, Rok Ting Tan, and Elena Nash (as well as all the unnamed people working
in the background) at World Scientific Publishing Co. who helped make this project

a success.

Greg Fasshauer and Mike McCourt
Chicago, IL, and Denver, CO, February 2015
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