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1 Introduction

This research monograph is intended as an introduction to, and exposition of, some
of the phenomena that solutions of nonlinear dispersive focusing equations exhibit
at energy levels strictly above that of the ground state soliton. It grew out of lec-
tures that the authors have given on various aspects of their work on focusing wave
equations. In particular, it is a much expanded version of the second author’s post-
graduate course (Nachdiplomvorlesung), which he taught in the fall of 2010 at ETH
Ziirich, Switzerland.

The equations which we consider in these lectures are Hamiltonian, but not com-
pletely integrable, and they all exhibit soliton-like (i.e., stationary or periodic) solu-
tions which are unstable. Amongst those the ground state is singled out as the one
of smallest energy. The aforementioned phenomena concern the transition from a
region of phase space in which solutions exist globally in forward time and scatter
to a free wave, to one where they blow up in finite positive time. We can describe
this transition in some detail provided the energy is only slightly larger than that of
the ground state. In fact, the boundary along which these open regions meet can be
identified as a center-stable manifold associated with the ground state.

To be more specific, consider an energy subcritical Klein—Gordon equation

i—Au+u= f(u) (1.1)

inR; x Rg with real-valued solutions. More generally, the mass term should be m?u
with m > 0, but we can set m = 1 without loss of generality. This equation should
be thought of as perhaps the simplest model equation which exhibits the phenomena
which we wish to describe here, but it should not be mistaken as the central object of
our investigations. We begin with a fairly general discussion of (1.1). It is invariant
under the full Poincaré group, i.e., under the group generated by spatial as well as
temporal translations, Euclidean rotations, and Lorentz transforms. The latter are
defined as the group that leave the quadratic form 2 — |£|? in R4*! invariant (the
Minkowski metric).

Moreover, (1.1) is both Lagrangian as well as Hamiltonian in the following
sense: at least formally, solutions to this equation are characterized as critical point
of the Lagrangian, with F' = f,

- L, oo 1,
£(u,u)_/ml+l[—§u + 5 1Vul? + S —F(u)](t,x)dtdx.



2 Introduction

This can be seen by integrating by parts in the integral representing £'(#) = 0. The
Lagrangian point of view is important with respect to conservation laws generated
by one-parameter subgroups of symmetries of £ (Noether’s theorem). For example,
time translation invariance leads to the conservation of the energy

Emﬂ)=/'{52+lwm2+LR—Fwﬂaxnu
pd L2 2 2

invariance under spatial translations yields the conservation of the momentum
P(u) = (u|Vu). Euclidean rotations are associated with the conservation of the
angular momentum.

The aforementioned energy subcriticality assumption which we made on (1.1)
now means the following: the nonlinear term F (u(t)) is strictly weaker than the
H'! part of the energy, as expressed by the Sobolev estimate. To be more specific,
consider f(u) = Alu|?~'u in R®, Then p < 5 is subcritical, whereas p = 5 is
critical and p > 5 is supercritical due to the Sobolev embedding H'(R3) ¢ L5(R3).
We shall not touch the supercritical case here at all. Even though it may seem most
desirable to restrict one’s attention to classical, i.e., smooth, solutions of (1.1) this
is not the case; the best notion of solution for many different reasons turns out to
be that of an energy solution which is a solution which belongs to H! x L2 for all
times.

To express (1.1) in Hamiltonian form, we write it as a first order system, with
dependent variable U := (%)

u

U=JHU+ N({U)

0 1 -A+1 0 0
(0 ) =) wo=(n)

For simplicity, let f = 0. Then energy conservation simply means that %( HU|U)
= 0. The symplectic form associated with (1.1) can be now seen to be

where

C()(U, V) = (JU|V) = /]]‘{d(Ule = U1 Vz)(x) dx.

There are two main classes dividing equations of the form (1.1): the defocusing
equations on the one hand, and the focusing ones on the other hand.

Loosely speaking, this division can be expressed along the lines of the global-
in-time existence problem for (1.1) for smooth, compactly supported data, say. De-
focusing equations admit smooth solutions for all data and all times, whereas the
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focusing ones may exhibit finite time blowup for certain data (such as those of nega-
tive energies). To be more specific, consider monic nonlinearities f(u) = A|u|?~'u
in arbitrary dimensions. Then A > 0 represents the focusing case, and A < 0 the
defocusing one. Note that this corresponds exactly to the distinction of the energy
E (u) being indefinite vs. positive definite, respectively.

Only the focusing case will be relevant to this monograph. Of central importance
to the theory of the focusing nonlinear Klein—-Gordon (NLKG) equation (1.1) is the
fact that they admit nonzero time-independent solutions ¢. Any weak H'! solution
of the semilinear elliptic PDE

—Ap+¢ = f(p) (1.2)

is such a solution. Letting the Poincaré symmetries act on ¢ generates a manifold of
moving solutions of the following form: first, define for any (p.q) € R24

0(p.g)(x) = Q(x —g + p((p) = DIp|p - (x = @),
where (p) := /1 + |p|?. The traveling waves generated from ¢ are defined as

u() = +9(p.q1), peR? 40 = L.

(p)
with fixed momentum p and velocity 2. They are solutions of (1.1). Note that
|(t)| < 1 in agreement with the fact that the speed of light which is normalized to
equal 1, acts as a barrier.

Amongst all solutions of (1.2) one singles out a positive decaying one, called
the ground state which we denote by Q. It is known to be unique up to translations
for many different nonlinearities f(u), and it is radial. Q is characterized as the
minimizer of the stationary energy (or action)

. 1 2 1 2
J(p) := /TRB [EIWI +5¢ —F(w)]dx

subject to the constraint, with ¢ # 0,

Ko(p) := fR3 [IVel* + ¢* — f(p)e]dx =0 (13)

It follows that the regions

PS4 = {(u,u) | E(u,u) < J(Q), Ko(u) =0},

_ _ (1.4)
@S = {(u,u) | E(u,u) < J(Q), Ko(u) <0}
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are invariant under the nonlinear flow in the phase space H' x L? where E(u, 1) is
the conserved energy for (1.1). It is a classical result of Payne and Sattinger [114]
that solutions in P8 are global, whereas those in ®S_ blow up in finite time;
these results apply to both time directions, i.e., blowup occurs for both positive and
negative times simultaneously, and the same is true of global existence. In partic-
ular, the stationary solution Q is unstable, see also Shatah [125] and Berestycki,
Cazenave [11]. Scattering in ®8 . was only recently shown by Ibrahim, Masmoudi,
and the first author [77] using the concentration-compactness proof method of Kenig
and Merle [84]. We present these results below the energy threshold J(Q) in Chap-
ter 2.
Starting with Chapter 3 we study solutions whose energies satisfy

J(Q) < E(u,u) < J(Q) + & (1.5)

for some small & > 0 and the special nonlinearity f(u) = u3 (although this is out of
convenience rather than necessity). It is here that one encounters the aforementioned
center-stable manifolds that appear as boundaries of open blowup/global existence
regions.

Center/stable/unstable manifolds are well-established objects which arise in
the study of the asymptotic behavior of ODEs in R”, see for example Carr [25],
Hirsch, Pugh, Shub [72], as well as Guckenheimer, Holmes [68], and Vander-
bauwhede [138].

Let us recall the meaning of these manifolds: given an ODE in R”, X = f(x)
with f(0) = 0, and f smooth, let A = Df(0). Then split R” = X,, + X; + X,
as a direct sum into A-invariant subspaces such that all eigenvalues of A | X, lie in
the right half-plane, those of A | X, lie in the left half-plane, and the eigenvalues
of A | X, are all purely imaginary. An example of such a situation is given by the
7 x 7 matrix

1'1 0 0 000
01 0 0 000
00 -1 0 000

A={00 0 0 100 (1.6)
00 0 —1 000
00 0 0 00 1
00 0 0 00 0]

The eigenvalues are {0, 1,—1,i, —i}, and X, is spanned by the first two coordinate
directions, X by the third, and the center subspace by the final four. Note that
X, splits into a rotation in the fourth and fifth variables, but has linear growth on
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the subspace spanned by variables six and seven. By the center-manifold theorem,
see [25], [68], [138], there exist smooth manifolds M,,, M, M, locally around zero
which are tangent to X, X;, X, respectively, at x = 0, and which are transverse to
each other. Moreover, M,,, M5, M, are each locally invariant under the flow (mean-
ing that a trajectory starting on any of these, say M., remains on M, as long as the
trajectory itself remains in a small neighborhood of the equilibrium point). A man-
ifold M,y which is tangent to X; + X, at x = 0, of the same dimension as this
tangent space, and is locally invariant under the flow is referred to as center-stable.
On Mg, M, the solution to X = f(x) decreases exponentially fast as t — oo or
t — —oo, respectively (in fact, they are characterized by this property). But on
M., the behavior can be quite complicated and that manifold is not characterized by
growth conditions.

Such a decomposition is relevant for several reasons. On the one hand, it reduces
the dynamics in the state space to lower-dimensional subspaces which is often the
only way to obtain any understanding of the flow. On the other hand, it is most
relevant for bifurcation theory of ODEs which refers to situations where the vector
field f(x) depends on a parameter y, see Guckenheimer, Holmes [68].

In the context of (1.1) and related Hamiltonian PDEs such as the cubic focus-
ing nonlinear Schrodinger equation (NLS), a center-stable manifold arose in [122]
from the attempt of obtaining a conditional asymptotic stability result for an unsta-
ble equation. More precisely, the second author obtained — for the cubic focusing
NLS in R3, and in a small neighborhood of the ground state soliton — a codimension
one manifold with the property that any solution starting from that manifold exists
globally and scatters to a (modulated) ground state soliton. The drawback of [122]
lay with the topology which is not invariant under the NLS flow. But Beceanu [9]
later carried out the construction in the optimal topology introducing several novel
ideas, such as Strichartz estimates for linear evolution equations with small time-
dependent but space-independent lower order terms. This allowed him not only to
obtain a similar conditional asymptotic stability result as the one in [122] (but of
course without any pointwise control on the rate of convergence of various param-
eters, which requires a stronger topology), but also to verify the properties usually
associated with the center-stable manifold such as invariance locally in time (in fact,
globally in forward time, and locally in backward time).

The method of proof in [122], [9] is perturbative, and is restricted to a small
neighborhood of the ground states. This work left open the question as to what
happens near the ground state soliton, but off the center-stable manifold. This is
one of the problems we wish to address in this monograph. While there has been
some heuristic and numerical work in the physics literature, see Bizon et al. [15],
[16] and Choptuik [30], the first rigorous results on this problem were obtained in
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[87], [88], [109]-[111]. As an example, consider the one-dimensional Klein—-Gordon
equation
Upr —Ugx +u = |u[Pu (1.7)

with p > 5. It is well-known that for this equation the solitons are given by the
explicit expressions

_1 p+ 1\t p—1
= B — - [ —
O(x) =acosh 2(Bx), « ( 5 ) , B 5
In contrast to the nonlinear Schrodinger equation, one of the advantages of (1.7) lies
with the fact that under an even perturbation Q does not change; in other words, it
is not modulated. In fact, the following result was obtained in [88].

Theorem 1.1. Let p > 5. There exists ¢ > O such that any even real-valued data
(ug,uy) € H'(R) x L%(R) with energy

Eu, i) < E(Q,0) + & (1.8)

have the property that the solutions u(t) of (1.7) associated with these data exhibit

exactly one scenario of the following trichotomy:

o u blows up in finite positive time

o u exists globally and scatters to zero ast — 00

o u exists globally and scatters to Q, i.e., there exists a free Klein-Gordon wave
(v(¢),9(r)) € H' x L* with the property that

(u(), (1)) = (Q,0) + (v(1), 0(1)) + ox(1), t — co.

In addition, the set of even data as above splits into nine nonempty disjoint sets
corresponding to all possible combinations of this trichotomy in both forward and
negative times.

All solutions which fall under the third alternative form the center-stable man-
ifold. One can show that this is a C! (or better) manifold of codimension 1 which
passes through (Q,0) and lies in the set described by (1.8). Figure 1.1 illustrates
Theorem 1.1 for data that start off near the ground-state solution (@, 0). The third
region is the center-stable manifold. The figure on the cover illustrates the nine sets
alluded to in the final statement of the theorem.

Moreover, we obtain the following characterization of the threshold solutions,
i.e., those with energies E(u) = E(Q,0). Results of this type originate with the
seminal work of Duyckaerts and Merle [48].
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wes

Figure 1.1. The forward trichotomy near (Q, 0)

Corollary 1.2. The even solutions to (1.7) with energy E(u) = E(Q,0) are char-
acterized by exactly one of the following scenarios, each of which can occur:

¢]
(o]
o
(]

they blow up in both the positive and negative time directions
they exist globally on R and scatter as t - +o00

they are constant and equal +Q

they equal one of the following solutions, for some ty € R:

oWi(t +1to,x), oW_(t +1to,x), aWi(—t+19,x), oW_(—t+1g, x)

where (Wy(t,-),0;Wx(t,-)) approach (Q,0) exponentially fast in ¥ ast — oo,
and 0 = x1. In backward time, Wy scatters to zero, whereas W_ blows up in
finite time.

As usual, the images of W4 and Q form the one-dimensional stable manifold as-

sociated with (Q, 0). The unstable manifold is obtained by time-reversal. The goal
of these lectures is to prove results such as Theorem 1.1 and Corollary 1.2. More
precisely, in Chapters 2-5 we restrict ourselves to the radial cubic NLKG equation
in R3 and systematically develop the machinery leading to results analogous to The-
orem 1.1 and Corollary 1.2 above.

Loosely speaking, the argument relies on an interplay between the hyperbolic

dynamics near the ground states on the one hand, and a variational analysis away
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from them on the other hand. While the former here means linearizing around the
ground states and then performing the necessary perturbative analysis locally around
the ground states, the latter refers to a type of global argument that is not at all based
on linearization. More precisely, we shall use the virial identity valid for any energy
solution of (1.1),

d 1
E(m | 5()( V4 V. x)u> = —K;(u) + error (1.9)
where K»(u) = |Vull5 — %llullj. The cut-off function w here is chosen in such

a way that the error remains small, cf. Figure 4.6 on page 165. From variational
considerations we shall be able to conclude that K, (u) has a definite sign away from
a neighborhood of +£0Q, and by integration of (1.9) we will obtain the important
no-return (or “one-pass”) theorem, see Chapter 4. This guarantees that solutions
which are not trapped by &0 can only make one pass near the ground states which
then implies that the signs of Ky(u), K»(u) stabilize. The latter then allows one
to conclude finite time blowup or global existence in the same way as Payne and
Sattinger [114], at least for those solutions which are not trapped by the ground
states. Those that are trapped are then shown to lie on the center-stable manifold
whence the third alternative in Theorem 1.1.

Since very little is known about solutions in the regime E (u, 1) > J(Q) + &2, it
seems natural to turn to numerical investigations in order to obtain some idea of the
nature of the blowup/global existence dichotomy. Roland Donninger and the sec-
ond author have conducted such computer experiments at the University of Chicago,
see [45]. This work consists of numerical computations of radial solutions to (1.1)
with f(u) = u? whose data belong to a two-dimensional surface (such as a planar
rectangle) in the infinite dimensional phase space ¥ := H'! x L? (of course the
data are chosen to belong to a fine rectangular grid on that surface). Each solution
is then evaluated with regard to blowup/global existence and a dot is placed on the
data rectangle if global existence is observed, whereas the dot is left blank otherwise.
Figure 1.2 below shows the outcome of such a computation for the data choice

(u(0).4(0))(r) = (Q(r) + Ae™"", Be™"")

with the horizontal axis being A, and the vertical being B. The central region, from
which thin spikes emanate, is the set of data leading to global existence. The drop-
shaped region contained inside of it is the set ® S, see (1.4), whereas both the region
to the far right (which meets ®8_; at a cusp centered at (Q, 0) which corresponds to
A = B = 0) as well as the region on the far left are ®S_. The region which appears
blank is the one giving finite time blowup (at least numerically), and it contains ® 8 _
as a subset.
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We refer the reader to [45] for a discussion of the numerical methods, as well as
more results and figures. The appearance of the two Payne—Sattinger regions near
the point (0,0) is reminiscent of the set §2 — n*> < 0. This is due to the fact that
the energy near Q takes the form of a saddle surface, which in turn follows from
the existence of negative spectrum of the linearized operator L+ = —A + 1 —3Q?,
see Section 3.1. In fact, there is a codimension-1 plane around (Q, 0) in ¥ such that
locally around that point the energy is positive definite on this plane, whereas it is
indefinite on the whole space. An important feature of the central global existence
region in Figure 1.2 is the appearance of the boundary: it seems to be a smooth curve.
In fact, we will prove in Chapter 3 that near (Q,0) in ¥ the boundary is indeed a
smooth codimension 1 manifold T with the property that solutions with data on that
manifold are global and scatter to Q as t — oco. In dynamical terms this manifold
is precisely the center-stable one, which contains the 1-dimensional stable manifold.
Furthermore, T\ is transverse to the 1-dimensional unstable manifold. The latter
manifold is characterized by the property that all solutions starting on it converge to
(Q,0) as t — —oo0; in fact, this convergence is exponential. Moreover, in positive
times solutions on the unique unstable manifold grow exponentially up until the time
at which they leave a small neighborhood of the equilibrium (Q, 0).

-8 -6 -4 2 0 2

Figure 1.2. Numerically computed planar section through (@, 0)



