Design of Integrated Circuits for Optical Communications

Behzad Razavi

Second Edition

Design of Integrated Circuits for Optical Communications Second Edition

Behzad Razavi

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Razavi, Behzad.

Design of integrated circuits for optical communications / Behzad Razavi. — Second edition.

pages cm

Includes index.

ISBN 978-1-118-33694-6 (hardback)

1. Optoelectronic devices. 2. Optical communications—Equipment and supplies. 3. Integrated optics. 4. Integrated circuits—Design and construction. 1. Title.

TK8320.R39 2012

621.382'7—dc23

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Design of Integrated Circuits for Optical Communications

To Angelina

Preface to First Edition

The increasing demand for high-speed transport of data has revitalized optical communications, leading to extensive work on high-speed device and circuit design. This book has been written to address the need for a tutorial text dealing with the analysis and design of integrated circuits (ICs) for optical communication systems and will prove useful to both graduate students and practicing engineers. The book assumes a solid understanding of analog design, e.g., at the level of *Design of Analog CMOS Integrated Circuits* by B. Razavi or *Analysis and Design of Analog Integrated Circuits* by P. Gray, P. Hurst, S. Lewis, and R. Meyer.

The book comprises ten chapters. Chapter 1 provides an introduction to optical communications, setting the stage for subsequent developments. Chapter 2 describes basic concepts, building the foundation for analysis and design of circuits. Chapter 3 deals with optical devices and systems, bridging the gap between optics and electronics.

Chapter 4 addresses the design of transimpedance amplifiers, focusing on low-noise broadband topologies and their trade-offs. Chapter 5 extends these concepts to limiting amplifiers and output buffers, introducing methods of achieving a high gain with a broad bandwidth.

Chapter 6 presents oscillator fundamentals, and Chapter 7 focuses on LC oscillators. Chapter 8 describes the design of phase-locked loops, and Chapter 9 applies the idea of phase locking to clock and data recovery circuits. Chapter 10 deals with high-speed transmitter circuits such as multiplexers and laser drivers.

The book can be adopted for a graduate course on high-speed IC design. In a quarter system, parts of Chapters 3, 4, and 10 may be skipped. In a semester system, all chapters can be covered.

A website for the book provides additional resources for the reader, including an image set and web links. Visit www.mhhe.com/razavi for more information.

I would like to express my gratitude to the reviewers who provided invaluable feedback on all aspects of the book. Specifically, I am thankful to Lawrence Der (Transpectrum), Larry DeVito (Analog Devices), Val Garuts (TDK Semiconductor), Michael Green (University of California, Irvine), Yuriy Greshishchev (Nortel Networks), Qiuting Huang (Swiss Federal Institute of Technology), Jaime Kardontchik (TDK Semiconductor), Tai-Cheng Lee (National Taiwan University), Howard Luong (Hong Kong University of Sci-

ence and Technology), Bradley Minch (Cornell University), Hakki Ozuc (TDK Semiconductor), Ken Pedrotti (University of California, Santa Cruz), Gabor Temes (Oregon State University), and Barry Thompson (TDK Semoconductor). I also wish to thank Michelle Flomenthoft, Betsy Jones, and Gloria Schiesl of McGraw-Hill for their kind support.

My wife, Angelina, encouraged me to start writing this book soon after we were married. She typed the entire text and endured my late work hours—always with a smile. I am very grateful to her.

Behzad Razavi July 2002

Preface

The field of optical communications has experienced some change since the first edition of this book was published. While the fundementals remain the same, the field has tried to find a place in mass markets and, specifically, spawned "passive optical networks." In addition, many new circuit techniques have been introduced for broadband applications, including optical systems.

This second edition reflects the new developments in the field. Recently reported circuit techniques for transimpedance amplifiers, broadband amplifiers, laser drivers, and clock and data recovery circuits have been described. Moreover, a new chapter dedicated to "burst-mode" circuits, i.e., building blocks required in passive optical networks, has been added.

Behzad Razavi April 2012

About the Author

Behzad Razavi is an award-winning teacher, researcher, and author. He holds a PhD from Stanford University and is Professor of Electrical Engineering at University of California, Los Angeles. His current research includes wireless transceivers, frequency synthesizers, phase-locking and clock recovery for high-speed data communications, and data converters.

Prof. Razavi served on the Technical Program Committees of the International Solid-State Circuits Conference (ISSCC) from 1993 to 2002 and VLSI Circuits Symposium from 1998 to 2002. He has also served as Guest Editor and Associate Editor of the IEEE Journal of Solid-State Circuits, IEEE Transactions on Circuits and Systems, and International Journal of High Speed Electronics.

Professor Razavi received the Beatrice Winner Award for Editorial Excellence at the 1994 ISSCC, the best paper award at the 1994 European Solid-State Circuits Conference, the best panel award at the 1995 and 1997 ISSCC, the TRW Innovative Teaching Award in 1997, and the best paper award at the IEEE Custom Integrated Circuits Conference in 1998. He was the co-recipient of both the Jack Kilby Outstanding Student Paper Award and the Beatrice Winner Award for Editorial Excellence at the 2001 ISSCC. He received the Lockheed Martin Excellence in Teaching Award in 2006, the UCLA Faculty Senate Teaching Award in 2007, and the CICC Best Invited Paper Award in 2009. He was also recognized as one of the top 10 authors in the 50-year history of ISSCC. For his pioneering contributions to high-speed communication circuits, Prof. Razavi received the IEEE Donald Pederson Award in Solid-State Circuits in 2012.

Professor Razavi has served as an IEEE Distinguished Lecturer and is a Fellow of IEEE. He is the author of *Principles of Data Conversion System Design, RF Microelectronics* (translated to Chinese, Japanese, and Korean), *Design of Analog CMOS Integrated Circuits* (translated to Chinese, Japanese, and Korean), *Design of Integrated Circuits for Optical Communications*, and *Fundamentals of Microelectronics* (translated to Korean and Portuguese), and the editor of *Monolithic Phase-Locked Loops and Clock Recovery Circuits* and *Phase-Locking in High-Performance Systems*.

Contents

Pr	eface 1	o First Edition xi	ii
Pr	eface		v
Ał	out th	e Author xv	ii
1	Intr	duction to Optical Communications	1
	1.1	Brief History	1
	1.2	Generic Optical System	2
	1.3	Design Challenges	5
	1.4	State of the Art	6
2	Basi	Concepts	8
	2.1		8
	2.2		2
	2.3		4
			4
			4
	2.4		6
			6
			6
			8
	2.5		1
	2.6		4
			24
			27
		Particular Control of the Control of	28
			28
	2.7		0
	2.7		0
			3
3	Onti	cal Devices 3	66
J	3.1		6
	5.1		88
		Citi Speinten of Engels and an analysis of the contract of the	100

viii	
VIII	CONTENTS

			0
			2
			5
	3.2		6
			7
		3.2.2 Fiber Dispersion	8
	3.3	Photodiodes	5
		3.3.1 Responsivity and Efficiency	5
		3.3.2 PIN Diodes	6
		3.3.3 Avalanche Photodiodes	7
	3.4	Optical Systems	8
4	Trar	simpedance Amplifiers 6	2
	4.1	General Considerations	2
		4.1.1 TIA Performance Parameters 6	4
		4.1.2 SNR Calculations	9
		4.1.3 Noise Bandwidth	2
	4.2		3
			3
		4.2.2 High-Frequency Behavior	1
	4.3	Feedback TIAs	7
		4.3.1 First-Order TIA	7
		4.3.2 Second-Order TIA	9
	4.4		7
	4.5	Differential TIAs	0
	4.6	High-Performance Techniques	13
		4.6.1 Gain Boosting	13
		4.6.2 Capacitive Coupling	15
		4.6.3 Feedback TIAs	6
		4.6.4 Inductive Peaking	0
	4.7	Automatic Gain Control	4
	4.8	Case Studies	8
	4.9	New Developments in TIA Design	2
5	Lim	iting Amplifiers	
	and	Output Buffers 13	0
	5.1	General Considerations	0
		5.1.1 Performance Parameters	0
		5.1.2 Cascaded Gain Stages	12
		5.1.3 AM/PM Conversion	6
	5.2	Broadband Techniques	8
		5.2.1 Inductive Peaking	8
		5.2.2 Capacitive Degeneration	10
		5.2.3 Cherry-Hooper Amplifier	13
		5.2.4 f_T Doublers	17

CONTENTS

	5.3	Output Buffers	19
		5.3.1 Differential Signaling	19
		5.3.2 Double Termination	53
		5.3.3 Predriver Design	6
	5.4	Distributed Amplification	;9
		5.4.1 Monolithic Transmission Lines	
		5.4.2 Distributed Amplifiers	
		5.4.3 Distributed Amplifiers with Lumped Devices	
	5.5	Other Broadband Techniques	
	5.5		
		5.5.2 Negative Capacitance	
		5.5.3 Active Feedback	
		5.5.4 Triple-Resonance Peaking	0
6	Osci	llator Fundamentals 18	5
	6.1	General Considerations	5
	6.2	Ring Oscillators	7
	6.3	LC Oscillators	8
	32.5	6.3.1 Crossed-Coupled Oscillator	
		6.3.2 Colpitts Oscillator	
		6.3.3 One-Port Oscillators	
	6.4	Voltage-Controlled Oscillators	
	0.4		
		6	
	(=	6.4.2 Tuning in LC Oscillators	
	6.5	Mathematical Model of VCOs	. /
7	LC (Oscillators 23	
	7.1	Monolithic Inductors	3
		7.1.1 Loss Mechanisms	5
		7.1.2 Inductor Modeling	9
		7.1.3 Inductor Design Guidelines	2
	7.2	Monolithic Varactors	6
	7.3	Basic LC Oscillators	
	7.0	7.3.1 Differential Control	
		7.3.2 Design Procedure	
	7.4		
	7.4		
		7.4.1 In-Phase Coupling	
		7.4.2 Antiphase Coupling	
	7.5	Distributed Oscillators	1
8	Phas	se-Locked Loops 26	4
	8.1	Simple PLL	4
		8.1.1 Phase Detector	4
		8.1.2 Basic PLL Topology	
		8.1.3 Dynamics of Simple PLI	

X CONTENTS

	8.2	Charge-Pump PLLs	280
			281
			282
			286
	8.3		293
	3.0		293
			297
	8.4		300
	8.5		302
	0.0		303
			305
		8.5.3 Jitter Reduction	306
9	Cloc	k and Data Recovery	308
	9.1		308
	9.2		320
			320
			324
			329
	9.3		333
	9.4		338
	7,7		338
		Active a great name operations contact and a	339
			341
	0.5		342
	9.5		344
			345
			349
		9.5.3 Jitter Tolerance	351
10	Mult	tiplexers and Laser Drivers	356
			356
	1012110		356
			361
	10.2		364
	10.2		364
			372
	10.3		374
	10.5		374
	10.4	****** * ******************************	378
	10.4		384
	10.5		
	10.5	New Developments in Laser Driver Design	385
11	Burs	st-Mode Circuits	393
			393

CONTENTS	xi

Index			417
11.4	Alterna	tive BM CDR Architectures	413
	11.3.3	Jitter Characteristics	410
		Effect of Frequency Mismatch and Offset	
	11.3.1	Effect of Finite Delays	405
11.3	Burst-N	Mode CDR Circuits	404
	11.2.3	Offset Correction in Limiting Amplifiers	402
	11.2.2	Burst-Mode TIA Variants	400
	11.2.1	TIA with Top and Bottom Hold	396
11.2	Burst-N	Mode TIAs	395

Chapter 1

Introduction to Optical Communications

The rapidly-growing volumes of data in telecommunication networks have rekindled interest in high-speed optical and electronic devices and systems. With the proliferation of the Internet and the rise in the speed of microprocessors and memories, the transport of data continues to be the bottleneck, motivating work on faster communication channels.

The idea of using light as a carrier for signals has been around for more than a century, but it was not until the mid-1950s that researchers demonstrated the utility of the optical fiber as a medium for light propagation [1]. Even though early fibers suffered from a high loss, the prospect of guided transmission of light with a very wide modulation band ignited extensive research in the area of optical communications, leading to the practical realization of optical networks in the 1970s.

This chapter provides an overview of optical communications, helping the reader understand how the concepts introduced in subsequent chapters fit into the "big picture." We begin with a brief history and study a generic optical system, describing its principal functions. Next, we present the challenges in the design of modern optical transceivers. Finally, we review the state of the art and the trends in transceiver design.

1.1 Brief History

Attempts to "guide" light go back to the 1840s, when a French physicist named Jacque Babinet demonstrated that light could be "bent" along a jet of water. By the late 1800s, researchers had discovered that light could travel inside bent rods made of quartz. The "fiber" was thus born as a flexible, transparent rod of glass or plastic.

In 1954, Abraham van Heel of the Technical University of Delft (Holland) and Harold Hopkins and Narinder Kapany of the Imperial College (Britain) independently published the idea of using a bundle of fibers to transmit images. Around the same time, Brian O'Brien of the American Optical Company recognized that "bare" fibers lost energy to the surrounding air, motivating van Heel to enclose the fiber core in a coating and hence lower the loss. Fiber loss was still very high, about 1,000 dB/km, limiting the usage to endoscopy applications.

The introduction of the laser as an intense light source in the 1950s and 1960s played a crucial role in fiber optics. The broadband modulation capability of lasers offered great potential for carrying information, although no suitable propagation medium seemed available. In 1966, Charles Ko and Charles Hockem of the Standard Telecommunication Laboratory (Britain) proposed that the optical fiber could be utilized as a signal transmission medium if the loss was lowered to 20 dB/km. They also postulated that such a low loss would be obtained if the impurities in the fiber material were reduced substantially.

Four years later, Robert Mauer and two of his colleagues at Corning Glass Works demonstrated silica fibers having a loss of less than 20 dB/km. With advances in semi-conductor industry, the art of reducing impurities and dislocations in fibers improved as well, leading to a loss of 4 dB/km in 1975 and 0.2 dB/km in 1979. The dream of carrying massive volumes of information over long distances was thus fulfilled: in 1977, AT&T and GTE deployed the first fiber optic telephone system.

The widespread usage of optical communication for the transport of high-speed data stems from (1) the large bandwidth of fibers (roughly 25 to 50 GHz) and (2) the low loss of fibers (0.15 to 0.2 dB/km). By comparison, the loss reaches 200 dB/km at 100 MHz for twisted-pair cables and 500 dB/km at 1 GHz for low-cost coaxial cables. Also, wireless propagation with carrier frequencies of several gigahertz incurs an attenuation of tens of decibels across a few meters while supporting data rates lower than 100 Mb/s.

The large (and free) bandwidth provided by fibers has led to another important development: the use of multiple wavelengths (frequencies) to carry several channels on a single fiber. For example, it has been demonstrated that 100 wavelengths, each carrying data at 10 Gb/s, allow communication at an overall rate of 1 Tb/s across 400 km.

1.2 Generic Optical System

The goal of an optical communication (OC) system is to carry large volumes of data across a long distance. For example, the telephone traffic in Europe is connected to that in the United States through a fiber system installed across the Atlantic Ocean.

Depicted in Fig. 1.1(a), a simple OC system consists of three components: (1) an electrooptical transducer (e.g., a laser diode), which converts the electrical data to optical form
(i.e., it produces light for logical ONEs and remains off for logical ZEROs); (2) a fiber,
which carries the light produced by the laser; and (3) a photodetector (e.g., a photodiode),
which senses the light at the end of the fiber and converts it to an electrical signal. We call
the transmit and receive sides the "near end" and the "far end," respectively. As explained
in Chapter 3, lasers are driven by electrical currents, and photodiodes generate an output
current.

With long or low-cost fibers, the light experiences considerable attenuation as it travels from the near end to the far end. Thus, (1) the laser must produce a high light intensity, e.g., tens of milliwatts; (2) the photodiode must exhibit a high sensitivity to light; and (3) the electrical signal generated by the photodiode must be amplified with low noise. These observations lead to the more complete system shown in Fig. 1.1(b), where a "laser driver" delivers large currents to the laser and a "transimpedance amplifier" (TIA) amplifies the photodiode output with low noise and sufficient bandwidth, converting it to a voltage. For

Figure 1.1 (a) Simple optical system, (b) addition of driver and amplifier, (c) addition of MUX and DMUX.

example, data at a rate of 10 Gb/s may be applied to the laser driver, modulate the laser light at a wavelength of 1.55 μ m, and emerge at the output of the TIA with an amplitude of 10 mV.

The transmit and receive operations in Fig. 1.1(b) process high-speed "serial" data, e.g., a single stream of data at 10 Gb/s. However, the actual data provided to the transmitter (TX) is in the form of many low-speed channels ("parallel" data) because it is generated by multiple users. The task of parallel-to-serial conversion is performed by a "multiplexer" (MUX). Similarly, the receiver (RX) must incorporate a "demultiplexer" (DMUX) to reproduce the original parallel channels. The resulting system is shown in Fig. 1.1(c).

The topology of Fig. 1.1(c) is still incomplete. Let us first consider the transmit end. The multiplexer requires a number of clock frequencies with precise edge alignment. These clocks are generated by a phase-locked loop (PLL). Furthermore, in practice, the MUX output suffers from nonidealities such as "jitter" and "intersymbol interference" (ISI), mandating the use of a "clean-up" flipflop before the laser driver. These modifications lead to the transmitter illustrated in Fig. 1.2(a).

The receive end also requires additional functions. Since the TIA output swing may not be large enough to provide logical levels, a high-gain amplifier (called a "limiting amplifier") must follow the TIA. Moreover, since the received data may exhibit substantial noise, a clean-up flipflop (called a "decision circuit") is interposed between the limiting amplifier and the DMUX. The receiver thus appears as shown in Fig. 1.2(b).

The receiver of Fig. 1.2(b) lacks a means of generating the clock necessary for the de-