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EDITOR’S FOREWORD

It is a truism based on several thousand years experience that the interac-
tion between mathematics and physics can be fruitful for both. The subtlety
and depth of modern physical theories makes essential systematic studies of
their logical and mathematical structure, yet such investigations have been
rather rarely available in the books published in recent years. The purpose
of the present series is to provide a home for such books. Mathematical
physics is herewith defined as the pursuit of significant structure in physical
theory. It is hoped that this series will make readily available systematic
accounts of recent developments in mathematical physics.

A.S. WIGHTMAN

Princeton, New Jersey
August 1963



PREFACE

When lecturing on advanced topics the author frequently writes out a
more or less complete (and somewhat improved) draft of the lectures actually
given and makes them available to the students. This was done in particular
for a course in the mathematical foundations of quantum mechanics given
at Harvard in the spring of 1960. These notes were corrected, typed, and
mimeographed by Messrs. E. Bolker, V. Manjarrez, A. Ramsay, and
M. Spivak and put on sale by the Harvard Mathematics Department. The
text of this book is substantially that of those notes. However, several pages
have been radically revised, numerous small errors have been corrected,
and a short appendix has been added.

The course (Mathematics 263) for which the notes were written was
designed for students with a reasonably high degree of facility in dealing
with abstract mathematical concepts and little or no knowledge of physics.
The reader is assumed to be familiar with the basic concepts of abstract
algebra, point set topology, and measure theory, and is given a rapid intro-
duction to coordinate-free tensor analysis on C« manifolds and to the theory
of self-adjoint operators in Hilbert space.

The aim of the course was to explain quantum mechanics and certain
parts of classical physics from a point of view more congenial to pure
mathematicians than that commonly encountered in physics texts. Accord-
ingly, the emphasis is on generality and careful formulation rather than on
the technique of solving problems. On the other hand, no attempt is made
at complete rigor. In places a complete treatment would have taken us too
far afield and in others non-trivial mathematical problems remain to be
solved. There are also places where completeness simply seemed more
troublesome than illuminating. In sum, we have tried to present an outline
of a completely rigorous treatment which can be filled in by any competent
mathematician modulo the solution of certain more or less well-defined
mathematical problems. '
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viii PREFACE

In accordance with our wish to demand no significant physical pre-
requisites, we have made an attempt to define all physical concepts used in
terms of those of pure mathematics and the basic ones of space and time.
Our fundamental viewpoint is that the change in time of a physical system
may be described by a one-parameter semi-group U acting on a set .S and
that the laws of physics make assertions about the structure of S and the
“infinitesimal generator” of U. In Chapter 1 this viewpoint is developed
systematicaily in so far as it applies to classical mechanics—the various sec-
tions dealing with special cases of varying generality. The final section on
statistical mechanics forms a natural bridge to quantum mechanics in two
different ways. In Chapter 2 quantum mechanics is presented from the same
point of view, in such a way as to stress the many parallels with classical
mechanics. In particular the last three sections of Chapter 2 correspond
one-to-one in a natural way to the last three sections of Chapter 1. Chapter 3,
on applications to atomic physics, is much shorter than the others and is
somewhat closer in spirit to the conventional treatment.

We have taken advantage of the informal character of a set of notes
to indulge in a certain amount of carelessness. If the reader thinks a sign
should be changed he is probably right. Perhaps there are more serious
errors here and there. We have also been rather haphazard about giving
bibliographical indications. Needless to say we have been strongly influenced
by the classic treatises of von Neumann and Weyl. Some supplementary
bibliographical material will be found in the appendix.

GEORGE W. MACKEY

Cambridge, Massachusetts
July 1963
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Chapter 1

CLASSICAL MECHANICS

1-1 Preliminaries

Let S denote the set of all ""states' of a physical system, where
""state" is defined in such a way that the state of the system at-a time
t =t, > 0 is uniquely determined by the appropriate physical law and
the state at t = 0. For example, the state of a system of n interact-
ing mass particles is determined by giving the 3n position coordinates
and the 3n velocity coordinates of the n particles. For each s S
and each t>0 let U,(s) denote the state at time t when the state at
time 0 is s. Then for each fixed t, Ui is a transformation of- S
into S. Now Ut,(Ut,(s)) is the state t, time units after the state
was U (s) and U, (s) is the state t, time units after it was s.
Thus Ut,(Ut,(s)) is the state t + t, time units after it was s;
that is, Ut,+t,(s). In other words, for all t, and t, with t, >0,
t, >0 we have

Utl“"tz =UtlUt2 (1)

It follows in particular that the set of all U; is a semi-group of trans-
formations. A semi-group which has been parameterized by the real
numbers so that (1) holds is said to be a one-parameter semi-group.
Thus the change in time of a physical system is described by a one-
parameter semi-group. We shall call it the dynamical semi-group of
the system.

If each U; is a one-to-one map of S onto S so that Ui' exists,
we shall write U_g = Ui' and U, = I, where I is the identity trans-
formation. Then (1) holds for all real t, and t, and we have a one-
parameter group. We shall deal mainly with systems that are reversible
in the sense that the dynamical semi-group may be expanded to a one-
parameter group as indicated above.

When our system is reversible, each s lies on one and only one
"orbit," where an orbit is the set of all points Uy(s) for fixed s and

1



2 MATHEMATICAL FOUNDATIONS OF QM

variable t. Each orbit is a curve in S. Generally speaking (we shall
give precise details in various special cases) S has sufficient extra
structure so that it makes sense to discuss the "'tangent vectors" tothe
points of each orbit. In this way the dynamical group assigns a ""vector"
to each point of S, i.e., a "vector field." This vector field is called
the "infinitesimal generator' of the group and in many cases determines
the group uniquely. This is of great importance because the physical
law is usually much more easily expressed by describing the infinitesi-
mal generator of the group than by describing the group itself. Indeed,
physical laws are almost always given in infinitesimal form, and in
order to obtain the orbits of the group one has to integrate differential
equations.

In the special case in which S is an open subset of Euclidean n-space
we may make the above considerations much more definite. (We shall
consider more general cases later.) Then each orbit in S is a curve

in n-space describedby n functions of t: q,(t),...,quy(t). Here
q,(t), ..., q,(t) = Udq,(0),..., q,(0)). If the derivatives q}(t),:.., ap (t)
all exist, they form the components to the tangent vector to the unique
orbit through the point q,(t),...,q,(t). We shall say then that U is
differentiable. Let us denote the n components of the tangent vector

to the orbit through q,,...,q, at q,,...,q, by AUq,, ..., 4n),

AQ(ql, ceslp)s e Aflay, .. d,)- Then every orbit t- q,(t),..., qp(t)

satisfies the system of differential equations

dq
‘d_tl A[l](ql) DR qn)

49,

dt Ag(qu ey qn) (2)

dq,
= = Al ap)

If the A'}] are differentiable functions of q,,...,q,, then the stand-
ard uniqueness theorems for differential equations tell us that there
1s at most one curve through a given point satisfying (2). Thus U
will be uniquely determined by the AY. When the AV exist and are
differentiable we shall say that U is thice differentiable. Thus we
have a natural one-to-one correspondence between twice-differentiable
one-parameter groups in S and certain continuous vector fields in S.
We may state the physical law by giving explicitly the functions A[]-I
We remark that not every differentiable vector field in S is thé
generator of a one-parameter group. The existence theorems in dif-
ferential equations provide local solutions only and it is easy to give



CLASSICAL MECHANICS 3

examples in which no global solution (i.e., no group Ut) exists.
Moreover, no simple necessary and sufficient conditions for the ex-
istence of global solutions are known. On the other hand, it is clear
from the above that the vector field cannot define a reversible physi-
cal law unless global solutions do exist.

As we shall see later, in systems with an infinite number of de-
grees of freedom, the above considerations lead to partial differen-
tial equations. In quantum mechanics the states can never be described
by a finite number of coordinates—even when the corresponding classi-
cal states could be. Thus in quantum mechanics we always have a par-
tial differential equation (or a system of such). It is called Schrédinger's
equation.

Though one can seldom write it down explicitly, the basic group
t- U; plays a very important role in theoretical considerations.

1-2 The Laws of Parficle Mechanics

Let x,, ¥,, Z;, Xpy Y2 Zg-+-5Xn, Yn» Zn be the coordinates of n
"particles' in some Euclidean coordinate system. Perhaps the most
basic law of classical particle mechanics is that the "future' coordi-
nates are determined by the coordinates and their time derivatives at
some particular time. Thus the space S of all states may be identi-
fied with a subset of 6n-dimensional Euclidean space. For the time
being we shall suppose that this subset is gpen—which means, roughly
speaking, that there are no "constraints.”” It will be convenient to re-
label the coordinates q,, ..., q,, and to denote the corresponding time
derivatives by v,,...,Vv,;. Assuming it to be twice-differentiable the
dynamical group U can be obtained by integrating a sysiem of ordinary
differential equations of the form

%4

_ A0

rra A.(ql, L 1""’Vsn)
o

5 = Aj(ql,...,qan,vl,...,vm)

Moreover, since v; = dq] /dt by definition, the functions A0 are all
known and we have the system

dq.
—d - .
dt i}

|
<

dvj
o = A](ql, cers3Qgps Vs o ..,Vsn)



4 MATHEMATICAL FOUNDATIONS OF QM

We remark that this is just the system of 6n first-order equations ob-
tained from the system of 3n second-order equations

d*q dq dg
——— = . . 3n
e Ai{ays - agp e )

by the standard device of substituting auxiliary variables for the first
derivatives. Further assumptions about the physical laws will restrict
the nature of the functions AJ- . We shall consider only systems in
which the following assumptions are made:

I. The Aj are functions of the gy alone and are independent of
the vi.

II. There exist positive constants MJ- such that

BMjAJ‘ _ OMpAy
qu qu

IIl. The MjAj are the partial derivatives of a function -V .

It is clear that the Mj in II are not uniquely determined by the Aj.
We can multiply them all by the same positive constant without alter-
ing the truth of II. On the other hand, the ratios Mj/ Myg are deter-
mined unless the corresponding partial derivatives vanish. If we
agree to set Mj /Mg =1 whenever II does not determine some other
value for the ratio, we see at once that the M; are uniquely deter-
mined once one of them has been assigned a definite value. Choosing
one such value is called ""choosing a unit of mass,” and the resulting
numbers M;j are called the masses associated with the corresponding
coordinates. It turns out in practice that Mg, = Mg, = Mgk 4g,
so that in fact the masses are attributes of the particles. Assumption
I is almost a consequence of II. By a well-known result in advanced
calculus, V certainly exists locally and these local V's can be com-
bined to form one global one whenever S is simply connected. How-
ever, if S is not assumed to be simply connected we must assume I
separately.

The function MjAj(q,, ..., dsn) is often denoted by Fi(q,, ..., qsp)
and is called the force component acting on the ith coordinate. The
number Mjvj is called the momentum component conjugate to qj. In
terms of the forces and momenta the equations of motion take the form

dq. . dp,
——q—l—iv&=F-(q...q)
dt M dt 17 > %sn

Assumption III takes the form Fj = -8V/8qi. One says that the forces
are conservative and are derived from the potential V.
Since the v; and p; determine one another uniquely we may regard
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the state of our system as described by the q; and the p; instead of
by the q; and vj. Of course, when this is done S becomes a differ-
ent subset of 6n-dimensional space. When S is the set of all possi-
ble q; and p;j it is called phase space. The real significance of the
switch to phase space will become cleargr in the coordinate-free treat-
ment to be given later.

By an integral of our system we shall mean a function ¢ defined
on phase space S such that ¢ is constant on the U; orbits. If ¢
is differentiable, then d/dt[¢(Uys))]{ = ¢ is easily seen to be

8¢ da, 29 dq,, 26 dp, 29 dp,.
E—dt_+"'+aq3n at tep, dt T Tep Tt

8¢ p, 3¢ p,, 99 3V 3¢p oV
9q, M, 9q M ap, 94, 9p, 2q

3n n
Thus ¢ is an integral if and only if this last expression is identically
zero in the q's and p's.

More generally, let W be any twice-differentiable one-parameter
group and let the 6n components of its mhmtesxmal generator be de-
noted by BYW 5o Bm, cV,...,c¥, each BY and C¥ being a func-
tion of the ¢'s and p's. Then a function ¢ 1s constant on the orbits
of W if and only if

09 pW ..., 20 pW 26
ap1

Vo2 W

Suppose that the vector field whose components, in order, are the
CY and ~B‘]3V is the set of all partial derivatives of some function ¢;
that is, suppose that

It follows at once frorm the above identity that ¢ will be constant on
the W orbits. Such vector fields play an important role in the theory.
They are called infinjtesimal contact transformations. If the infini-
tesimal gefierator of W is an infinitesimal contact transformation,
that is, if ¢ exists so that

W = .a_(p. Bw = __a._¢_
€ 94y j apy

we say that W is a one-parametey group of contact transformations .
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The function ¢ determines W uniquely and is uniquely determined by
it up to an additive constant. We shall call it the fundamental invariant
of W,

We shall now show that our dynamical group U is a one-parameter
group of contact transformations and hence has at least one nontrivial
integral. We must find a function (which we shall call H) such that

°H 3 9H A
5 %11‘- and  Fo = 5g
Pj j 9j 9j
We see from the first set of equations that H must be of the form -

P, pt Psn®
oM, TaM, T Tam

+H( yeersQ )
3n ot n

and from the second that we may take H, = V. Thus the function H,
where

p,* P’
H(ql,...,qsn,pl,...,pan) =§_1\1ﬂ+... +‘2—§I'I;I—1+V(q1,--',q3n)

is a constant on the orbits of U. It is called the integral of energy or
simply the energy of the system. The fact that it remains constant in
time is one aspect of the so-called ""law of conservation of energy." In
terms of H we may rewrite the differential equations of motion in so-
called "Hamiltonian'' form,
dq; _ 9H dpj _ _ 8H
q oy, T

Y

In this context the function H is called the Hamiltonian of the sys-
tem. We note that H is the sum of two terms, one of which depends
only upon the positions and the other only upon the velocities. These
two terms are known respectively as the potential energy and the
kinelic energy.

Let W be a one-parameter group of contact transformations whose
fundamental invariant is { and let us consider the condition that ¢
be a constant on the orbits of W . Substituting in the formula derived
above we find that the condition is

_fe oy . _ 23 8y 89 By, 8% d¥ _,
29, 9p, 8qanapsn °p, 94, apan aqsn

The expression on the left is called the Poisson bracket of ¢ and Y
and is denoted by [¢, ¢ ]. It is obvious that [¢,y] = —[¢,9] and
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hence that [¢,¢] = 0 if andonly if [Y,¢] = 0. This means that
¢ is a constant on the orbits of the one-parameter group of contact
transformations defined by Y if and only if { is a constant on the
orbits of the one-parameter group of contact transformations defined
by ¢. In the special case in which ¢ = H we get the following im-
portant principle. Let Y be the fundamental invariant of any one-
parameter group of contact transformations WY . Then Y is an
integral of our dynamical system if and only if the transformations
WY carry H into itself. In this way we get a correspondence be-
tween integrals and one-parameter groups of '""'symmetries."” As we
shall now show, the familiar momentum integrals correspond to the
translational and rotational symmetries of space.

Suppose that for each fixed q,,...,q,, S contains q,,..., An»
Pys«-sPypn for arbitrary p;,..., P Let 9N denote the open set
in E3" consisting of all q,,...,q,, whichoccur. Let t-U; bea
twice-differentiable one-parameter group in 9 whose infinitesimal
generator is the vector field with components D,,...,D an - Then
in a manner which it will be easier to explain in the next section, U
induces a one-parameter group. W in S, whose infinitesimal gener-
ator is

3n 3n 3an
N ep; M D, & aD;
D,,...,D 5= piaql BN T FRRRPE) P ~—L

i=1 1 i=2 2 i=1 930

We see at once that W is a one-parameter group of contact trans-
formations whose fundamental invariant is p;D,(q,,...,q_ ) + -

p,, D, (TR a, }.. Whenever U is such that H is leit invari-
ant gy an Wi the Panction P.D, (g, ... a,,) + o0 mean(ql, RPN
will be an integral which is linear in the p's. Such integrals, when
they exist, are called momentum inltegrals.

An important case in which momentum integrals occur is that in

which V depends only upon the distances between the particles—for
instance, in planetary motion or more generally when

n Wi_Wj
Fi(X,,¥,, 20, -5 2n) = ), Gyl wy—wy 1) Wy - w1

=t

ixi

where wj is the vector x;,Vi, 24, Iw;— wjl =

\/(xi - xj)2 +(yi—vyi)2 + (21— zj)2 and Gj; is a continuous function
defined on the positive real axis such that Gjj = Gjj- In sucha case
let t—- A; be any one-parameter group of distance preserving trans-
formations in 3-space. Then X,,y,,Z;,...,Xp, Yn,Zn—~



