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Preface

This volume presents five review articles of areas of current research interest in
several branches of modern optics.

The first article, by U. Keller. discusses the progress which has been made in re-
cent years in ultrafast pulse generation, using solid-state lasers. In the last decade,
the performance of compact ultrafast solid-state lasers has been improved by sev-
eral orders of magnitude in pulse duration, in average power. in pulse energies
and in pulse repetition rates. In this article these and other breakthroughs are dis-
cussed. The article provides both the expert and the non-expert with an overview
of this rapidly advancing field.

The second article. by A.V. Shchegrov, A.A. Maradudin and E.R. Méndez, re-
views research on the scattering of electromagnetic waves from randomly rough
surfaces. Unlike earlier investigations in this field. the article covers the more diffi-
cult subject of multiple scattering from such surfaces and discusses more recently
discovered effects such as enhanced backscattering and enhanced transmission.

In the next article, by Y. Ishii, an interesting advance in interferometry is de-
scribed, namely a phase-measuring technique which uses direct frequency mod-
ulation of a laser diode source by changing the current. This technique has been
implemented in holographic interferometry and in phase conjugate interferome-
try, for example.

The fourth article, by J. Gea-Banacloche, reviews the theory of quantum tele-
portation and the ways in which this intriguing quantum phenomenon has been
experimentally demonstrated in optical systems. Among the topics covered are
the relationship between teleportation of discrete and continuous variables. en-
tanglement and teleportation. the difficulty of Bell measurements, and schemes
for near-deterministic teleportation with linear optics. The limitations of current
experiments and some questions of interpretation are also discussed.

The concluding article. by H.J. Carmichael. G.T. Foster, L.A. Orozco, J.E. Rei-
ner and PR. Rice. uses intensity—field correlation functions of the electromagnetic
field as a tool for studying quantum fluctuations of light. The relationship between
the correlation functions and quadrature squeezing is noted and conditions are de-
veloped to distinguish between classical and non-classical field fluctuations. The
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theoretical analysis is illustrated by examples such as the optical parametric os-
cillator, a cavity QED system and the composite system of a single atom coupled
to an optical parametric oscillator. The results of experimental measurements on
a cavity QED system are also reviewed.

Emil Wolf
Department of Physics and Astronomy
and the Institute of Optics
University of Rochester

Rochester. NY 14627, USA

February 2004
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pulse envelope normalized such that [A(z.1)]” = P(z.1) (eq. (6.2))

A is the Fourier transformation of A, i.e. A = j A(t)e Aot gy (egs. (6.8)
and (6.9))

laser mode area on saturable absorber

laser mode area in laser gain media

pump mode area

depth of focus or confocal parameter of a Gaussian beam

dispersion parameter (eq. (6.18) and Table 7). i.e. half of the total group
delay dispersion per cavity roundtrip

gain dispersion (eq. (6.10)) and Table 7)

width of the pump source (i.e. approximately the stripe width of a diode
array or bar)

impulse response of a saturable absorber mirror measured with standard
pump probe (fig. 4)

electric field of the electromagnetic wave

E is the Fourier transformation of E. i.e. E = [ E(re " dr (egs. (6.6)
and (6.7))

intracavity pulse energy

output pulse energy

absorber saturation energy (Table 3)

laser saturation energy Eq . = FoaL - AL

f)= %” with [ f(1)dt =1 (eq. (4.7))

pulse repetition frequency

fluence, F = [ I(7)dr. in units of ujﬂ

absorber saturation fluence (Table 3)

laser saturation fluence (eqs. (3.1) and (3.2))

incident pulse fluence on saturable absorber (Table 3)

saturated amplitude laser gain coefficient

small signal amplitude laser gain
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photon energy

intensity

incident intensity on saturable absorber

absorber saturation intensity (Table 3)

vacuum wave number, i.e. k =27 /A

wave number in a dispersive media, i.e. k, = nk

total saturated amplitude loss coefficient. / includes the output coupler, all
the residual cavity losses and the unsaturated loss of the saturable
absorber

amplitude loss coefficient of output coupler

amplitude loss coefficient of soliton due to gain filtering and absorber
saturation (eq. (6.53))

absorption length

length of laser gain material

modulation depth of loss modulator (eq. (6.11))

curvature of loss modulation (eq. (6.11) and Table 7)

M? factor defining the laser beam quality (eq. (3.3))

M? factor in the “slow™ axis, parallel to the pn junction of the diode laser
M? factor in the “fast” axis, perpendicular to the pn junction of the diode
laser

refractive index of a dispersive media

nonlinear refractive index (eq. (6.20))

power

peak power of pulse

absorbed pump power

average output power

saturable amplitude loss coefficient (i.e. nonsaturable losses not included)
(eq. (4.2))

unsaturated amplitude loss coefficient or maximal saturable amplitude
loss coefficient (eq. (4.1))

total absorber loss coetficient which results from the fact that part of the
excitation pulse needs to be absorbed to saturate the absorber

residual saturable absorber amplitude loss coefficient for a fully saturated
ideal fast absorber with soliton pulses (eq. (6.46))

reflectivity for intensity

saturation parameter § = % (Section 4.2.1)

time

time shift (eq. (6.37))

time that develops on a time scale of 7% (eq. (6.1))
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intensity transmission of the laser output coupler

cavity roundtrip time

pump volume

beam waist of a Gaussian beam (eq. (3.3))

optimized beam waist for efficient diode pumping (eq. (3.5))
chirp parameter (egs. (6.30) and (6.31))
pulse propagation distance

Rayleigh range of a Gaussian beam, i.e. g = TEA

change in the pulse envelope

modulation depth of a saturable absorber mirror (fig. 5)
nonsaturable reflection loss of saturable absorber mirror (fig. 5)
modulation depth of saturable absorber in transmission
nonsaturable transmission loss of saturable absorber

FWHM gain bandwidth

FWHM gain bandwidth, i.e. —% = n
SPM coefficient (eq. (6 22) dnd Table T)

phase shift, ¢ =k, - 2, z: propagation distance

nonlinear phase shift per cavity roundtrip (eq. (6.33))

phase shift of the soliton during propagation along the z-axis (eq. (6.51))
phase shift of the soliton per cavity round trip (eq. (6.54))

nonlinear phase shift of a pulse with peak intensity /) during propagation
through a Kerr media along the z-axis, i.e. ¢n1(z) =knolyz

phase shift (eq. (6.28))

absorber coefficient (eq. (4.13) and Table 7)

vacuum wavelength of light

center vacuum wavelength

A).(\,

wavelength in a dispersive media with refractive index n, i.e. A, =A/n
effective wavelength (eq. (3.4))

frequency

pump photon frequency

radian frequency

center radian frequency

modulation frequency in radians/second

half-width-half-maximum (HWHM) gain bandwidth of laser in
radians/seconds, i.e. £2, = 7 Av, (eq. (6.3))

divergence angle of a pump source (i.e. the beam radius increases
approximately linearly with propagation distance, defining a cone with
half-angle #)

divergence angle of a Gaussian beam, i.e. g = = (eq (3.3))
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absorber cross section

gain cross section

absorption cross section

recovery time of saturable absorber
FWHM of intensity autocorrelation pulse
photon cavity lifetime

upper state lifetime of laser gain material
FWHM intensity pulse duration

Tp.min minimal 7,



