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Preface

Research is discovery, but also full understanding. In this respect this book is a
research book, since in many sections I have attempted to go further and deeper
than the usual interpretation or explanation as it now stands in the chemical liter-
ature.

Some readers will find that I have been short on references. Indeed, I have
purposely taken a historical perspective and tried to restrict the 1970s references
to a share that was proportional to their actual contribution to advancing our un-
derstanding rather than to their volume. Hence there are a relatively large number
of references from the 1950s and 1960s and even the 1930s and 1940s.

I am grateful to Professors Gerald Segal, James Mclver, Weston Borden, Nguyen
Trong Anh, Josef Michl, Ken Houk, Olivier Kahn, and Alberte Pullman for their
constructive comments on the successive chapters of the book. Monique Grisez
and Frangoise Pariset have also been of outstanding assistance.

Finally, this book reflects a theoretician’s viewpoint and is a theoretician’s
translation of the experimental chemist’s language. It owes its existence to all the
scientists who in the last half century have made theoretical chemistry a living
subject.

LIONEL SALEM

Laboratoire de Chimie Théorique
Université de Paris-Sud

31405 Orsay, France

January 1982
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Introduction:
Resonance in Chemistry

¥

Resonance, introduced by Pauling and Wheland,' is the conceptual heart of chem-
istry. The notion that a molecule ‘‘hesitates’’ between different structures, borrows
its characteristics from all of these and finally adopts a structure that is somewhat
intermediate between them, is central to understanding electronic behavior.*

Resonance may involve alternative patterns for the distribution of double and
single bonds, as in the famous case of benzene:

It may involve competition between convalent and ionic character, as in hydrogen
chloride or in a phosphonium ylide:

@0 e e
H—Clo HCl R,C—PR, < R,C=PR,

It may illustrate the manner in which a net charge is actually distributed over
several atoms, as in the enolate anion, in which case redistribution of unsaturation
also occurs. Multiple possibilities may exist in the presence of unpaired electrons
such as in ozone, where an unpaired diradical structure and zwitterionic structures
are simultaneously available:

o
0 H 0
\e 7/ o
C—C « C=
Vi N
H H R
® ®
0 0 0 0

7 N\ o/ \ R 7,
0o 0«0 0—0 0e—0—O0

(see Section 3.5).

*For a lucid account of the history of structural uncertainty in organic chemistry, see Ref. 2.



2 Introduction: resonance in chemistry

TABLE I-1
Isosymmetric Isoelectronic Table for Simple Groups®
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“The number of electrons refers to the labile electrons at the atom (each o bond adds nonlabile o
electrons in the immediate vicinity of the central atom). Dots above the atom refer to = electrons, dots
below the atom refer to o electrons. Net charge increases by 1 in each column from left to right and
from second to third and fourth lines. -

Electron counting is a crucial requirement in understanding the chemical be-
havior of molecules. For the rare reader who might not yet be familiar with this
process, we give the electron count for some fundamental entities (Table I-1).

In this ‘‘isosymmetric, isoelectronic table’” we have aligned groups that have
not only the same number of total electrons, but also the same number of both o
and T electrons. By o or m we mean to identify the nature of the atomic, hybrid,
or molecular orbital occupied by each electron and its symmetry—o, symmetric,
or 7 antisymmetric—relative to the local plane of the bonds surrounding the atom
(for an atom with a single bond to it, we proceed by continuity). It is clear that
these symmetries serve
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1. To distinguish electronic structures that have the same global count.

2. To refine the isoelectronic concept since chemical analogies will certainly
be greater between two groups centered on different atoms and involving
the same total number of electrons—but with same o and 7 numbers—
than between two groups with the same central atom but with different o
and 7 numbers.

3. Eventually, to develop rules for reactions between groups, based on the
changes in o and  counts during the reaction.

In Sections 1.2 and 1.3 the reader will find how resonance structures can be
translated into a more quantitative language. In Chapter 3 a detailed study of the
interplay of molecular orbital theory, valence-bond theory and resonance theory
is given for a number of intermediates.

References

1. L, Pauling and G. W. Wheland, J. Chem. Phys. 1, 362 (1933); L. Pauling, The Nature of the
Chemical Bond (Comell University Press, Ithaca, NY, 1960); p. 220.

2. C. A. Russell, The History of Valence (Leicester University Press, Leicester, UK, 1971), pp. 296
8qq.



1
Methods and Methodology

In the last half century (1930-1980) chemists have hardly modified their conceptual
thinking on electrons in molecules. Either the electrons are regarded as being paired
in bonds, according to the principles introduced by G. N. Lewis, or they are

. considered to exist as delocalized entities covering the entire molecule. In the first
case the appropriate description of the electron pair is a valence-bond wave func-
tion, and in the second case each electron is described by a molecular orbital wave
function. The actual numerical methods for calculating energies and chemical prop-
erties are far more numerous in the molecular orbital realm, although interest in
valence-bond methods is increasing.

1.1 Wave Functions and Electronic States
Practically all studies of organic and inorganic reactions to date have been con-
ducted within the framework of the Born-Oppenheimer approximation.' It is rec-
ognized that electrons are much lighter than nuclei (by a factor of at least 1836,
the mass of the proton) and thereby move much faster. In the time it takes the
electrons of a molecule to explore the entire space around all the nuclei, these have
essentially remained at standstill. It is then common practice, except in sophisti-
cated studies of nuclear-electronic coupling in the reactions of light molecules, to
calculate all the electronic properties of molecules as if the nuclei were fixed.
Hence, for each molecular geometry, the nuclei are given fixed positions, for which
electronic wave functions and electronic stationary states are calculated. There will
be a ground electronic state, with energy E, (or simply E) and excited electronic
states, with energies E,, E,, E;, and so on.
These electronic energies are obtained from the fixed nucleus wave equation
Vo, Vo o+ Vo + TV = BY (1-1)
where V,,, V,., and V,, describe the coulombic interactions between nuclei, be-
tween nuclei and electrons, and between electrons, respectively, and 7, represents
the kinetic energy of the electrons.
If we now repeat the same operation for a different fixed-nucleus configuration,
we get a new set of energies Ej, E|, and so forth. For a given state, the set of
energies E, E’', E”, and so on form a potential surface (Fig. 1-1). Since each point

on the surface corresponds to a different nuclear configuration, this surface actually
describes the variation of molecular energy as a function of nuclear coordinates.

4



Valence-bond wave function for two electrons in a covalent bond 5
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FIGURE 1-1. Potential surface for an electronic state.

o =

The potential surface can then be understood as describing the potential energy to
which the nuclei are subjected. In a dynamic manner the molecule can be regarded
as moving on this surface.

1.2 Valence-Bond Wave Function for Two Electrons in a Covalent Bond
Heitler and London? introduced for the hydrogen molecule a function

1 1
- = Y T, [Da(Ddp(2) + da(DdA(2)] X W(a'h - By (12

that has yet to be surpassed in its simplicity. It expresses the fact that when electron
1 is on atomic orbital ¢,, electron 2 is on atomic orbital ¢, and conversely. In
equation (1-2) S is the overlap integral

s=f%%w (1-3)

between the two atomic orbitals ¢, and ¢g. The spin part of the wave function
(o, upspin for electron 1; B,, downspin for electron 2) shows the electrons to be
paired in a singlet state. If the two electrons were present in the same bond but
unpaired with parallel spins, the wave function would be that of the excited triplet
state:

1 1
= YT [Da(Ddp(2) — dp(1)P,(2)] X v (@B, + By (14

The corresponding potential curves drawn as a function of the internuclear distance
R are shown in Fig. 1-2.

The wave function for the ground singlet state has the following characteristics,
which are typical of simple valence-bond functions: (1) the bonding is covalent,
with the electrons either sharing the bond region or each occupying alone, at a
given time, the region of an atom; (2) the electrons are relatively well ‘‘correlated,’’



6 Methods and methodology

FIGURE 1-2.  Potential curves for ground singlet state and lowest triplet state of H, using the Heitler-
London wave function with strict atomic 1s orbitals of exponent unity. Reprinted from Introduction to
Quantum Mechanics by L. Pauling and E. B. Wilson. Copyright, 1935, by the McGraw-Hill Book
Company. Used with the permission of the McGraw-Hill Book Company.

keeping away from each other; and (3) the two electrons do not come together
(except in the interatomic region) to profit simultaneously from the attraction of
one of the nuclei. However, a consequential strength is the proper behavior of the
function at large interatomic distances, where the molecule dissociates into two
atoms.

The triplet wave function shares these features with the exception that the elec-
trons avoid being in the bond region together; the probability that they will appear
there is even less than in the case where the two atoms are simply brought alongside
with all interactions turned off.

1.3 Mixing of Functions: A Quantitative Description of Resonance
In the same manner that the hydrogen molecule can be described as a resonance
mixture of covalent and ionic structures

@ © o @
H—HeH{HeH H (1-5)

the valence-bond wave function can be improved by adding an ionic term

b 1 1
W = Viios [Da(1)A2) + dp()dg(2)] X 5 (@B, — Biay) (1-6)

to the previous covalent term (1-2). The mixing coefficient in
R )\‘I,ionic g (1_‘7)

will be determined variationally, so as to optimize the total electronic energy.
Although the two component wave functions (1-2) and (1-6) are far from orthog-
onal,? it is convenient to use the mixing coefficient to express the percentages of
covalent and ionic character in the bond (in the present case 93 and 7% at equilib-
rium). "



Mixing of functions: a quantitative description of resonance 7

For more complicated systems, with a series of resonance structures I, II, III,
and so on, the wave function will be chosen as a linear combination of the cor-
responding functions ¥, ¥,;, ¥,;;, and so forth:

v=> aV¥, (1-8)

where ¥, is the wave function for a ‘‘canonical’’ valence-bond structure.* The
function for a single structure is often quite complicated. It is an antisymmetrized
product of atomic orbitals and spin orbitals,* which can be reduced to a combination
of Slater determinants. Some examples are given in Table 1-1 for the simplest
groups of atoms: two, three, or four. The resonance structures are shown alongside,
where the notation |¢,pd] is the abbreviation for the determinant

> daDa(l)  dp(DB()  de(Da(l)
6sBdcl = [6,2a2)  GBQD)  d(Da(2) (1-9)
6a3)  G3BG)  d3a3)

In the resonance structures dotted lines indicate triplet ‘‘bonding’’ between parallel

spins, whereas .Is X and k indicate an atom with §, = %2, S, = 0, and §, =
— Y2 electron, respectively.

In the case of ionic resonance, where charge can move back and forth between
two centers, there are clearly two possible combinations of the corresponding func-
tions:

o .B {«bA(p«bA(z) * $p()bp(d) (patia) or 0

[babal = |bpbsl

For H,, in equation (1-6), we took the positive combination, which alone had the
correct spatial symmetry to mix with the covalent Heitler-London function. The
energy of the combined function (1-7) is calculated by the variational technique;
the secular equations yield two roots, the lower one of which is the improved
ground state and the higher one, a high-lying '2: ionic state whose first approx-
imation is the positive combination (1-10). The negative combination (1-10) is the
wave function for another ionic state of high energy, the lowest excited singlet
state (‘=) of hydrogen. Thus it is generally useful to distinguish between ‘‘in-
phase’’ resonance (positive combination) and ‘‘out-of-phase’’ resonance (negative
combination) by appropriate signs written above the arrows:

®0 +) ©8® ®0 (-) ©®
AB 3 AB  AB © AB (1-11)

*For a given system of atomic orbitals, the number of linearly independent wave functions is restricted
to the so-called Rumer diagrams in which no lines intersect (*‘canonical’’ set).*
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