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Preface

This book is divided into two parts.

The first one is purely algebraic. Its objective is the classification of
quadratic forms over the field of rational numbers (Hasse-Minkowski
theorem). It is achieved in Chapter IV. The first three chapters contain some
preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.
Chapter V applies the preceding results to integral quadratic forms of
discriminant + 1. These forms occur in various questions: modular functions,
differential topology, finite groups.

The second part (Chapters VI and VII) uses “analytic” methods (holomor-
phic functions). Chapter VI gives the proof of the *‘theorem on arithmetic
progressions’ due to Dirichlet; this theorem is used at a critical point in the
first part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,
and in particular, with theta functions. Some of the quadratic forms of
Chapter V reappear here.

The two parts correspond to lectures given in 1962 and 1964 to second
year students at the Ecole Normale Supérieure. A redaction of these lectures
in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-1V)
and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to
me; I extend here my gratitude to their authors.

J.-P. Serre
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Chapter 1

Finite Fields
All fields considered below are supposed commutative.

§1. Generalities

1.1. Finite fields

Let K be a field. The image of Z in K is an integral domain, hence
isomorphic to Z or to Z/pZ, where p is prime; its ficld of fractions is iso-
morphic to Q or to Z/pZ = F,. In the first case, one says that K is of
characteristic zero; in the second case, that K is of characteristic p.

The characteristic of X is denoted by char(K). If char(K) =p + 0, pis
also the smallest integer #»> 0 such that n.1 = 0.

Lemma.—If char(K) = p, the map o: x v+ xP is an isomorphism of K onto
one of its subfields KP".

We have o(xy) = o(x)o(y). Moreover, the binomial coefficient (Z) is
congruent to 0 (mod p) if 0<k<p. From this it follows that

o(x+y) = a(x)+a(y);
hence ¢ is 2 homomorphism. Furthermore, o is clearly injective.

Theorem 1.—i) The characteristic of a finite field K is a prime number
p * 0; if f = [K'F,}, the number of elements of K is g = p’.

it) Let p be a prime number and let g = p/(f 2 1) be a power of p. Let
Q be an algebraically closed field of characteristic p. There exists a unique
subfield ¥, of Q which has q elements. It is the set of roots of the polynomial
X-X.

iii) All finite fieids with q = p’ elements are isomorphic to F,.

If X is finite, it does not contain the field Q. Hence its characteristic is a
prime number p. If f is the degree of the extension K/F,, it is clear that
Card(K) = p’, and i) follows.

On the other hand, if Q is algebraically closed of characteristic p, the
above lemma shows that the map x> x? (where ¢ = p/, f2 1) is an
automorphism of {; indeed, this map is the f— th iterate of the automorphism
o: x —» xP (note that o is surjective since Q is algebraically closed). Therefore,
the elements x € {2 invariant by x + x? form a subfield F, of Q. The derivative
of the polynomial X7— X is

gX" —1 = pp X o] = —]
3



4 Finite fields

and is not zero. This implies (since €2 is algebraically closed) that X?—

has ¢ distinct roots, hence Card(F)) = ¢q. Conversely, if K is a subfield of (2
with ¢ elements, the multiplicative group K* of nonzero elements in X has
g—1 elements. Then x*~! = 1 if xe K* and x* = x if x € K. This proves
that K is contained in F,. Since Card(K) = Card(F,) we have K = F, which

completes the proof of ii).
Assertion iii) follows from 1i) and from the fact that all fields with p/

elements can be embedded in €2 since {2 is algebraically closed.

1.2. The multiplicative group of a finite field

Let p be a prime number, let / be an integer 21, and let ¢ = p/.

Theorem 2.—The multiplicative group K} of a finite field F, is eyclic of
order g — 1.

Proof. If d is an integer = I, recall that ¢(d) denotes the Euler ¢-function,
i.e. the number of integers x with 1 £ x £ d which are prime to d (in other
words, whose image in Z/dZ is a generator of this group). It is clear that the
number of generators of a cyclic group of order d is $(d).

Lemma L.—/f n is an integer 21, then n = 2. ¢(d). (Recall that the nota-
tion d|n means that d divides n).

If d divides n, let C, be the unique subgroup of Z/nZ of order d, and
let ®, be the set of generators of C,. Since all elements of Z/nZ generate
one of the C,, the group Z/nZ is the disjoint union of the ®, and we have

n = Card(Z/nZ) = ¥, Card(®,) = ¥ 4(d).
din din

Lemma 2.—Let H be a finite group of order n. Suppose that, for all divisors
d of n, the set of x € H such that x* = | has at most d elements. Then H is
cyclic.

Let d be a divisor of n. If there exists x € H of order d, the subgroup
(x) ={1, x,...,x* '} generated by x is cyclic of order d; in view of the
hypothesis, ail elements y e H such that y* = 1 belong to (x). In particular,
all elements of H of order d are generators of (x) and these are in number
#(d). Hence, the number of elements of H of order d is O or ¢(d). If it were
zero for a value of d, the formula n = '”an:(d) would show that the number

of elements in /{ is <n, contrary to hypothesis. In particular, there exists an
element x € H of order n and H coincides with the cyclic group (x).

Theorem 2 follows from lemma 2 applied to H = F} and n = g—1;
it is indeed obvious that the equation x¢ = 1, which has degree 4, has at
most d solutions in F,.

Remark. The above proof shows more generally that all finite subgroups
of the multiplicative group of a field are cyclic.



Equations over a finite field

§2. Egquations over a finite field

Let g be a power of a prime number p, and let K be a field with g elements.

2.1. Power sums

Lemma.—Let u be an integer 20. The sum S(X"} = Exx“ is equal to — 1
XE

ifuis z1 and divisible by g— 1, it is equal to 0 otherwise.

(We agree that x* = 1 if u = 0 even if x = 0.)

If u = 0, all the terms of the sum are equal to 1; hence S(X*) = ¢.1 =0
because K is of characteristic p.

If uis 21 and divisible by g— 1, we have 0* = 0 and x* = 1 if x + 0.
Hence S(X*) = (g—1).1 = —1.

Finally, if w is =21 and not divisible by g—1, the fact that K* is cyclic
of order g — 1(th. 2) shows that there exists y € K* such that y* % 1. One has:
S(Xu) — Z X" = Zyuxu _ yuS(XU)

xeK* xekK*
and (I - y*)S(X*) = 0 which implies that S(X*) = 0.
(Variant—Use the fact that, if 4 2 2 is prime to p, the sum of the d— th
roots of unity is zero.)

2.2. Chevalley theorem

Theorem 3 (Chevalley —Warning).—Let f,e K[X,,..., X, be poly-
“ nomials in n variables such that ¥ deg f, < n, and let V be the set of their
common zeros in K". One has 2

Card(V) = 0 (mod p).
Put P = [[(1 =f7"") and let x € K".If x ¢ V, all the f,(x) are zero and

P(x) = 1; if x ¢V, one of the f,(x) is nonzero and f(x)* ' = 1, hence
P(x) = 0. Thus P is the characteristic function of V. If, for every polynomial
Siweput S(f)= X f(x), we have

" Cand(v) = S(P) (mod p)

and we are reduced to showing that S(P) = 0.

Now the hypothesis £ deg f, < n implies that deg P < n(g—1); thus P
is a linear combination of monomials X* = X{ ... X* with Yu; < n(qg— ).
It suffices to prove that, for such a monomial X", we have S(X*) =0, and
this follows from the lemma since at least one u, is <g—1.

Corollary 1.— If % deg f, <n and if the f, have no constant term, then the f,
have a nontrivial common zero.

Indeed, if V' were reduced to {0}, Card(¥) would not be divisible by p.

Corollary 1 applies notably when the f, are homogeneous. In particular:
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Corollary 2.—A/l quadratic forms in at least 3 variables over K have a

non trivial zero.
(In geometric language: every conic over a finite field has a rational

point.)

§3. Quadratic reciprocity law

3.1. Squares in F,

Let ¢ be a power of a prime number p.

Theorem 4.-(a) If p = 2, then all elements of F, are squares.

(b) If p + 2, then the squares of ¥7 form a subgroup of index 2 in F};
this subgroup is the kernel of the homomorphism x v x9~ Y2 with values
in{+1}.

(In other terms, one has an exact sequence:

1 >F?>Fy>{+1}—~1)

Case (a) follows from the fact that x +— x? is an automorphism of F,.
In case (b), let Q be an algebraic closure of F,; if x e F}, let y e be
such that y2 = x. We have:

Yot = x@12 — 4 since x4 = 1,

For x to be a square in F, it is necessary and sufficient that y belongs to F},
ie. 27! = 1. Hence F}? is the kernel of x+— x@™ "2 Moreover, since F}
is cyclic of order ¢ — 1, the index of F}? is equal to 2.

3.2. Legendre symbol (elementary case)

Definition.—Let p be a prime number +2, and let x € ¥;. The Legendre

symbol of x, denoted by (f), is the integer X~ "2 = 11,
p
0

It is convenient to extend (f) to all of F, by putting (—) = 0. Moreover,
P p

x ’
if x ¢ Z has for image x' ¢ F,, one writes (;) = (__)

We have ({> (X> = (’2) The Legendre symbol is a “‘character™ (cf.
P/\P P

chap. VI, §1). As seen in theorem 4, g = 1 is equivalent to x e F}?; if

. X -
x € F} has y as a square root in an algebraic closure of F,, then (;) =y



Quadratic reciprocity law

Computation of (E) forx=1,-1,2:

If n is an odd integer, let ¢(n) and w(n) be the elements of Z/2Z defined by:

o) = "=} (mod 2) = f0ifn = 1(mod 4)
2 lifn = —1(mod 4)
2 ——

wii) = = mod 2) = J0if7n = +1(mod8)
8 1ifn = +5(mod 8)

[The function ¢ is a homomorphism of the multiplicative group (Z/4Z)*
onto Z/2Z; similarly, « is a homomorphism of (Z/8Z)* onto Z/2Z.]

Theorem 5.—The following formulas hold:

1

(-)=1

()

") (_—_]) — (__l)z(p)
P

iii) (3) = (=1)o®,
p

Only the last deserves a proof. If « denotes a primitive 8th root of unity
in an algebraic closure Q of F,, the element y = a+a™! verifies y* = 2
(from a* = —1 it follows that a®+2~% = 0). We have

Y=o +a" "
.. 2
If p = +1 (mod B), this implies y* = y, thus (;)) =y '=1LIfp= +5

(mod 8), one finds yP = a®+a™% = —(a+a” ') = —y. (This again follows
from a* = —1.) We deduce from this that ! = —1, whence iti) follows.

Remark. Theorem 5 can be expressed in the following way:
—1is a square (mod p) if and only if p = 1 (mod 4).
2 is a square (mod p) if and only if p = +1 (mod 8).

3.3 Quadratic reciprocity law
Let / and p be two distinct prime numbers different from 2.

Theorem 6 (Gauss).— (;_)) = (? ) (— 1),

Let Q be an algebraic closure of F,, and let w e Q be a primitive /th
root of unity. If x € F,, the element w* is well defined since w' = I. Thus
we are able to form the ““Gauss sum’’:

y=2 (f) wh.
xeF, 1

Lemma 1.—y? = (—1)%%,
(By abuse of notation / denotes also the image of / in the field F,.)
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8
We have
XZ\ x+2 u H(u—1)
—— — = w ————— -
(5= )
Now if 1 + 0:
-0\ _ (=2 f1-u! = (= 1) P —ur™!
! ! 1 / )
and
(=12 = Y Cw",
ueF,
where

fu=0 Co= 3 (l> = I/—1; otherwise s = 1—ut~"' runs over F,—{1},

teF}

500

since in K there are as many squares as non squares. Hence 2. C wh =

I—1— X w" = [, which proves the lemma.
uekr

Lemma 2.—yf ™' = (ﬁ)

and we have

!
Since Q is of characteristic p, we have

P = f— ol ZP—-I L p—:‘—f = £ M
g ,,;.(p)w 2;< 7 )W ( 1)” (/)y’
hence y* ! = (—1’3)

Theorem 6 is now immediate. Indeed, by lemmas | and 2,

(=N -1 [P
(55)=r-()

and the second part of th. 5 proves that

((_i.w)) ={— 1):(1)1(0)_
¥4

Translation.—Write [Rp if I is a square (mod p) (that is to say, if /is a
‘““quadratic residue’ modulo p) and /Np otherwise. Theorem 6 means that

IRp < pRI ifp or I=1 (mod4)
IRp <> pN! ifpand! = —1(mod4).



