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Preface

This is not a cookbook, for switch-mode power converter design is a
serious topic that must be treated with the utmost care. Therefore, the
book makes a major departure from most existing texts covering the
same subjects. It uses mathematics extensively, employing, for example,
symbolic closed-form solutions for conduction times of a loaded full-
wave-rectifier with a capacitor filter. At the first sight, readers may feel
discouraged, but there is no shortcut. I sincerely urge readers to be
patient, for the reward is profound.

The book covers in depth the three basic topologies: step-down
(buck, forward), step-up (boost), step-down/up (flyback); push—pull;
current-fed; resonant converters and their derivatives; AC-DC power
factor correction. Depending on the operating conditions, switch-mode
power converters may operate either in continuous conduction mode
(CCM) or discontinuous conduction mode (DCM). Under transient
conditions, the operation of power converters may slide in and out of
both modes. For closed-loop control of converters, two fundamental
mechanisms, voltage-mode control or current-mode control, are gener-
ally employed. Current-mode control has been understood to offer su-
perior performance. Current mode control is further subdivided into
average-current control and peak-current control. While most switch-
mode converters utilize pulse-width modulation, resonant converters
use frequency modulation. In addition to the main operation mechanism,
many supporting circuits are also needed to make power converters
viable. These include switch drivers, error amplifiers, and feedback
isolators.

The presentation follows a fairly consistent pattern. The relationship
between steady-state output and control variables (duty cycle, in the case
of PWM, or frequency, in the case of resonance) is established first for
both the CCM and the DCM operation. By examining the cyclical
current waveforms of CCM, geometrical properties of the waveforms
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are extracted. These lead to the identification of critical inductance,
which marks the boundary distinguishing CCM and DCM operation.

Under each operation mode and given a selected control mechanism,
steady-state closed-loop output formulation that includes feedback
ration, error amplifier, PWM gain (or frequency-modulation gain), and
power stage is then established. In some simplified cases that
exclude losses, the output formulation may be placed in the explicit
form. When losses are included, the desire to obtain an explicit form is
prohibitively impractical and abandoned. Instead, implicit functions and
Jacobian determinants are employed to study output sensitivity and
regulation.

With the steady state firmly established, the small-signal AC stability
issues are examined for both control modes. Loop stability with voltage-
mode control based on the average model (Dr. R. Middlebrook) is
formulated and validated. Current-mode control necessitates the add-
ition of current-loop gains surrounding the original average mode. In
effect, the Middlebrook average model is extended to current-mode
control and remains as valid.

This book also introduces accelerated steady-state analysis in the
time domain. The technique connects the concept of the continuity of
state and the periodic, steady-state output of converters. The analysis
uses two approaches: Laplace transformation and state transitions. The
latter calls on eigenvalues, eigenvectors, and matrix exponentials, the
core of matrix theory associated with system theory.

Nowadays, simulations always play some role in almost all fields of
studies. For power converters, there is no exception. This book, however,
approaches it from a more fundamental way, which is quite distinctive
from the graphic-based simulations available commercially. The latter
suffers convergence issues frequently. Our approach avoids such nagging
difficulties.

The book is written for those already exposed to the basics of switch-
mode power converters and seek higher dimensions. It is suitable for
graduate students and professionals majoring in electrical engineering. In
particular, readers with training in linear algebra will find the techniques
of state transition being applied very inspiring.
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Chapter 1

Isolated Step-Down (Buck)
Converter

The power stage of an isolated buck converter in its simplest form is
presented in Figure 1.1. Depending on the output loading and the value
of filter inductor L, the power stage can be operated in two distinctive
modes: continuous conduction mode (CCM) and discontinuous conduc-
tion mode (DCM). In the CCM, the inductor current, i, always stays
above zero. In the DCM, the current, for a certain duration, stays at
zero. It is also understood that, in the CCM, the power stage alternates
between two topologies while, on the contrary, it experiences three in the
DCM.

1.1 CCM Open-Loop Output and Duty Cycle
Determination

If ideal rectifiers are assumed and series losses are ignored, the require-
ment of flux conservation, that is, the volt-second balance, across the
inductor gives

(ﬂVi —V0>D'Ts+(—Vo)(1_D)Ts:0 (1.1)
NI’
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Dpcm: D2 Ds

Va V &
n Np
CCM
0
Va . DCM Vmﬁ
Np
Vo
0

Figure 1.1: Power stage of an ideal forward converter

when the circuit alternates between two topologies under the steady state
with a defined switch(Q)-on duty cycle, D, and a given clock rate 7.
Obviously, (1.1) results in

(1.2)

As a matter of fact, (1.2) can also be given a different interpretation. That
is, the rectangular wave, V,, driving the loaded LC filter contains a DC
component:

Vo:;nn'D (13)



1.1. CCM OPEN-LOOP OUTPUT AND DUTY CYCLE DETERMINATION 3

This latter view aligns well with the ultimate goal of the converter
operation, extracting the average voltage embedded in the transformed
input drive and regulating the output voltage by fine-tuning the turn
ratio with variable duty cycle, D.

However, in reaching (1.1)—(1.3), we made an expedient, but unreal-
istic, assumption, which is the zero forward voltage a rectifier diode
offers when it is conducting. We shall make the necessary corrections
by first forgoing the assumption of the ideal diode. Rather, the rectifier’s
forward voltage is given a nonzero value, Vp. With it, and referring to
Figure 1.2, (1.1)—(1.3) are modified and become

(%V ~Vp— V(»)D~T.\»+(—VD— Vol =D)T; =0  (1.4)
p

V,+ V
D:# (1.5)
—sVin

_VD

Figure 1.2: Nonideal power stage
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N.
VU=F;Vm'D—VD (1.6)

Next, we consider series losses—first the secondary side losses then the
primary side losses. We include the secondary side losses by examining
(1.6). What (1.6) offers is the voltage presented by an ideal source that
has zero source resistance. If a nonzero source resistance, ry, exists, (1.6)
evolves into

N,
Vo="Vin+D— L — 1.7
N’, m RL ( )
or
X VD~V

A (18)

14+

Ry

We also note the presence of primary side resistance, including the input
filter series resistance, the transformer primary winding resistance, and the
switch-on resistance. It is also understood that the input filter resistance
experiences a DC current while the transformer’s primary winding resis-
tance registers a pulsating current. In other words, (1.8) is modified as

N, Vo
N Vm R w +Ron) -
3 D—-Vp
v, = : 1 (1.9
+R_L

Readers are cautioned in applying (1.9), for it is an implicit function in
V, and a quadratic equation for D. With a little patience, (1.9) yields

v — (n-D-Vin— VD)RL n_& (l 10)
" [D>+Rp + (Ry + Ron)DI® + Ry +r.” N, '




