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PREFACE

This text was developed as an alternative version of the senior author’s
book, Thermodynamics. The primary spirit of these two books is the same;
microscopic arguments are used to provide insight into the basic macroscopic
postulates. Indeed, the fundamental developments of the first seven chapters
are fully identical in the two books. Beyond this the texts begin to differ.
The parent text treats a broad range of applications in engineering, physical
chemistry, and includes introductory chapters in statistical thermodynamies,
kinetic theory, and irreversible thermodynamiecs. In contrast, this book con-
centrates along the lines of more traditional engineering courses. The appli-
cations possess a stronger engineering flavor, and introductory chapters on
applied one-dimensional gas dynamics and heat transfer are included. Thus,
the parent text best serves a basic course for engineers anticipating graduate
study, where these subjects will be covered in depth. On the other hand, this
version is better suited for mechanical engineers going into practice upon
graduation, or for engineers in other fields desiring an introductory back-
ground in some important areas of mechanical engineering.

Throughout the text, the value of a systematic methodology in analyses
is emphasized. Such an approach is absolutely essential and should be required
in the student’s problem assignments. A lack of understanding of the funda-
mentals of engineering frequently is caused by students consistently starting
problems ““in the middle.” Overly easy homework problems ean often be suc-
cessfully solved in this manner, and we have purposely provided longer and
more difficult problems, particularly in the later chapters where several of the
thermodynamic principles can be brought to bear in a single analysis. We have
found that getting into the analysis of simple thermodynamic systems as soon
as possible provides good motivation for further developments in theory. For
this reason, energy-balance applications are taken up before the introduction
of second-law concepts. This arrangement also provides a period for digestion
of state and first-law concepts and helps spread the introduction of new ideas
more evenly over the course.

Our objective has been to develop the subject matter in a way that retains
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the generality and simplicity of purely macroscopic thermodynamics and yet
draws upon the student’s insight into microscopic matters. To this end the
microscopic arguments are used to provide an intuitive basis for macroscopic
postulates; the laws of thermodynamics are not derived from microscopic postu-
lates. 'Bhis approach preserves the generality of macroscopic thermodynamies
and at the same time places the roots for energy, entropy, and temperature
firrgly~ ii{fhé Aicroscopic world. Our intention is to clearly establish the tie
betWeen“’the‘.ﬂhacroscopic and miecroscopic viewpoints at an early stage and
provide«tlie student with a full appreciation of the importance of both views.

This book could not have been written without the continued encourage-
ment and suggestions of faculty colleagues and students at our two institu-
tions. In particular, we both obtained a real appreciation for the methodology
of thermodynamic analysis from Professor A. L.. London. Professors S. J. IXline,
A. Anderson, and Philip Schmidt made many helpful criticisms and suggestions
during the development of the parent text. The patience of our wives and
families in enduring our discussions of Rankine cycles, choked flow, ete., should
also be acknowledged.

WILLIAM C. REYNOLDS

HENRY C. PERKINS
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CHAPTER ONE SOME
INTRODUCTORY
ffffff CONSIDERATIONS

1.1 THE NATURE OF THERMODYNAMICS

Thermodynamies deals with matter and interactions between matter; since
every technological system involves matter, thermodynamic analysis is very
important in engineering. Examples of thermodynamic analysis are given
throughout this text. In particular, the examples of Chaps. Five and Nine show
applications to engineering systems, and those of Chaps. Eight and Ten indicate
the role of thermodynamics in the study of substances. The student may wish
to scan these examples now to get some idea about the direction and scope of
the subject.

Thermodynamics centers about the notions of energy; the idea that energy
is always conserved is both the fundamental starting point and the basis for
quantitative analysis. A second concept in thermodynamies is entropy; entropy
provides a means for determining if a process is possible. Processes which pro-
duce entropy are possible, those which destroy entropy are impossible. These
ideas of energy and entropy provide the framework of thermodynamics, and a
clear understanding of them is therefore crucial. For this reason we shall place
heavy emphasis on the development of real understanding of these and related
concepts. This development requires exposure to the ideas, a chance to use
them operationally, and time for satisfactory digestion. Consequently we shall
introduce new concepts gradually and with some repetition, and shall make use
of the ideas in practical analysis shortly after their first introduction. The
successful student will be one who works hardest on understanding concepts.
The engineering calculations that we shall do are intended as vehicles for gaining
understanding of the concepts and for developing the ability to carry out such a
calculation independently.

What do we need to know about matter in order to carry out an engineering

analysis of a system of interest? Matter is composed of particles; any visible
1
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piece of matter contains a tremendous number of molecules, atoms, electrons,
etc., each of which can have energy in a variety of ways. A microscopic descrip-
tion of such a piece would require the enumeration of the state of each particle,
an obviously impractical task. In thermodynamics we seek to reduce the bits of
information required to adequately describe states of matter from something
of the order of 10% to “few.” This is accomplished by some sort of statistical
averaging; we are willing to forego knowledge of microscopic detail in favor
of simplicity. Thermodynamics is therefore a macroscopic science, which allows
us to relate the averaged (macroscopic) properties of matter. Fortunately, the
microscopic aspects are not essential in many important technical problems,
and we can obtain excellent engineering solutions using the simpler macroscopic
ideas.

The ultimate nature of matter is microscopie, of course, and our under-
standing of macroscopic theories can be considerably enhanced by drawing on
microscopic concepts. For instance, it may be hard to visualize an object sitting
motionless on a table as having any energy; but the thought of electrons whirl-
ing about vibrating nuclei provides a vivid physical picture of that energy and
makes it much easier to visualize various means for changing the energy of the
object. In this text we shall take optimum advantage of microscopic ideas,
using them to provide physical interpretations of macroscopic properties and
intuitive bases for macroscopic postulates.

Thermodynamic theory allows us to relate various properties of matter, so
that by measuring some of them we can calculate others. Although microscopic
ideas are indeed helpful to understanding, thermodynamics does not require
the postulation of any particular microscopic models of matter. Other physical
theories have been developed which do require specific microscopic models,
and from these emerge predictions for the values of properties of the substance
represented by the model. In statistical mechanics some sort of statistical
model of the substance is postulated, and in kinetic theory a dynamic model is
employed. These theories, although more specific in their output, are less
general than those of thermodynamics. In fact, results from thermodynamics
are usually used in association with the microscopic theories. Historically
thermodynamics, statistical mechanics, and kinetic theory have developed sepa-
rately, usually from somewhat different foundations. Our use of microscopic
concepts allows us to lay a more common foundation for these three subjects,
such that their relation and interdependence can more easily be appreciated.
We shall go into some simple microscopic analyses following development of
the key thermodynamic ideas.

The knowledge of the behavior of matter obtained from thermodynamics
is extremely important in engineering analysis. When carried out in a systematic
fashion, such analyses are not very difficult; but we cannot emphasize enough
the importance of a systematic methodology, without which easy problems
become hard. In parallel with more theoretical thermodynamic developments
we shall use the methodology in illustrative engineering examples. Understand-
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ing of the basic thermodynamie concepts and principles and the ability to apply
them in engineering are the primary objectives of our study.

In this chapter we shall attempt to establish a point of view through
discussion of ideas already familiar to the student. The fundamental approach
and philosophy adopted in this review of the basic concepts, models, and laws
of related branches of physics will be carried over to the new thermodynamic
ideas in subsequent chapters.

1.2 CONCEPTS, MODELS, AND LAWS

Concepts form the basis for any science. These are ideas, usually somewhat
vague (especially when first encountered), which often defy really adequate
definition. The meaning of a new concept can seldom be grasped from reading
a one-paragraph discussion. There must be time to become accustomed to the
concept, to integrate it with prior knowledge, and to associate it with personal
experience. Inability to work with the details of a new subject can often be
traced to inadequate understanding of its basic concepts.

The physical world is very complicated, and to include every minute detail
in a theoretical analysis would be impracticable. Science has made big steps
forward by the use of models, which, although always representing some simplifi-
cations over reality, reduce the mathematics to a tractable level. The range of
validity and utility of the resulting theory is consequently restricted by the
idealizations made in formulating the model. Newtonian mechanics is quite
adequate for analysis of the great majority of everyday mechanical processes,
and inclusion of relativistic effects in such mechanical analysis is an unneces-
sary complication. However, in many instances such effects are important, and
it is the responsibility of the user of any theory to know both its bases and its
limitations.

Concepts and models are not enough in themselves for a physical theory.
These notions must be expressed in appropriate mathematical terms through
basic equations, or laws. We choose to look upon a physical law as a con-
trivance of man that allows him to explain and predict phenomena of nature.
Such predictions will be only as accurate and encompassing as the models on
which the laws are based, and as new information is gathered and new under-
standing is developed, man may find it convenient, or perhaps necessary, to
alter the basic laws. For example, mechanics is a direct outgrowth of Kepler’s
astronomical studies and his laws relating to the motion of planets about the
sun. Newton generalized these observations and formed new, more basic laws,
from which Kepler’s rules could be deduced as special consequences. Later
Newton’s mechanics became merely a special case of Einstein’s relativistic
mechanics. In general, laws are replaced not because they are incorrect, but
because their range of validity is restricted. Such was the case in the early
development of thermodynamics, where at one time heat was thought of as
something contained within matter. A useful but extremely limited caloric
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theory of heat, built upon this concept, was discarded more than a century ago;
unfortunately, carryover of this misconception inhibits understanding of con-
temporary thermodynamics.

In many fields of science the concepts are very close to everyday experi-
ence, and the difficulties are primarily mathematical in nature. In most of
thermodynamics the converse is true; the mathematics is not complicated but
the concepts are sometimes difficult to grasp at the beginning, and most of the
errors in thermodynamic analysis arise because of lack of clarity in either con-
cepts or methodology. IFor this reason we shall spend a good deal of time on
these matters; they should not be taken lightly, even though it may not be
evident why so much attention is paid to apparently small details. To begin
the discussion, let us review some concepts that are already familiar, examin-
ing them in the manner we shall subsequently employ in thermodynamics.

1-3 A FRESH LOOK AT SOME FAMILIAR CONCEPTS

One of the most important and central concepts in physics is force. It took
man millenniums to evolve the force concept as a tool for explaining the varied
interactions between objects in his environment. He observed that any one of
a number of things can cause a given object to assume a certain position or
undergo a certain gyration. The perception that in discussing the behavior of
the object a particular cause can be replaced by a hypothetical “force’” heralded
the beginning of mechanics. Today we use this concept almost unconsciously
whenever we replace the action of one body upon another by an appropriate
force (see Fig. 1-1).

Forces are conceived as those pushes and pulls that tend to make objects
move, and an essential part of the concept is that forces are somehow in balance
when the object under study is motionless (or when its motion is uniform).
It is essential to appreciate that the notion of a balance of forces in the absence
of acceleration is an integral part of the force concept; whether or not forces
“really exist’’ is a philosophical question which we need not debate. The fact
is that the force concept allows us accurately to predict events in the real
world, and this alone justifies its invention.

Forces are conceived as having both magnitude and direction and are
treated mathematically as vectors. The vector sum of all forces acting on a
body that is not accelerating must be zero.

We imagine that any two bodies in contact will exert forces upon one
another. When we analyze the motion of one body, we mentally remove the

FIG. 1:1 The effect of either the spring or the shaft on body A can be replaced by F
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FIG. 1:2 The notion that “action equals reaction” is an integral part of the force concept

other and replace its influence on the first by a force (Fig. 1-2). If we wish
instead to study the motion of the second body, the first body would be replaced
by a force of exactly the same magnitude but acting in the opposite direction.
This “action-reaction’ principle was formulated by Newton as his third law,
but it is really an integral part of the concept of force.

No conceptual quantity becomes operationally useful until some way for
its measurement has been established. One possible way of setting up a scale
for force is to select some standard spring and say that the force it exerts is
some selected constant times its deflection. This scheme has the distinet dis-
advantage of making the force scale dependent on the choice of material in
the spring, among other factors. Suppose someone else set up a similar scale,
based on a different kind of spring; the two scales could be adjusted to agree
at one point but could not be expected to agree elsewhere. To each one the
other would be nonlinear. It is always more desirable to devise scales of measure
that are completely independent of the nature of any substance. In principle it
is possible to 1o this for force, taking advantage of the notion that the resultant
force on a stutionary body is zero. Imagine selecting any reproducible force,
such as that produced by a selected spring compressed some selected amount,
and designating this as a unit force. Let this force act on a body in sole opposition
to two identical forces selected so as to keep the spring at its standard deflection
when the body is motionless (the two identical forces could be obtained from
any two identical springs, for example). The two identical forces must each be
half the unit force, and either can be used to measure such a force (see Fig. 1-3).
This process can be continued, and we can collect a set of springs, each measuring
some rational fraction or multiple of the unit force. We can therefore, in principle,
measure any unknown force to any desired degree of accuracy. The force scale is
unique in that it is independent of the nature of any substance. It will be the
same regardless of the material of which the springs are made.

FIG. 13 A unique force scale can be established using symmetry and the con-
cepts of force



