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Foreword

From the beginning it was clear that, despite its successes, the Standard
Model of elementary particles would have to be embedded in a broader
theory that would incorporate gravitation as well as the strong and elec-
troweak interactions. There is at present only one plausible candidate for
such a theory: it is the theory of strings, which started in the 1960s 2s a
not-very-successful model of hadrons, and only later emerged as a possible
theory of all forces.

There is no one better equipped to introduce the reader to string
theory than Joseph Polchinski. This is in part because he has played a
significant role in the development of this theory. To mention just one
recent example: he discovered the possibility of a new sort of extended
object, the ‘Dirichlet brane’, which has been an essential ingredient in the
exciting progress of the last few years in uncovering the relation between
what had been thought to be different string theories.

Of equal importance, Polchinski has a rare talent for seeing what is
of physical significance in a complicated mathematical formalism, and
explaining it to others. In looking over the proofs of this book, I was re-

“minded of the many times while Polchinski was a member of the Theory
Group of the University of Texas at Austin, when I had the benefit of his
patient, clear explanations of points that had puzzled me in string theory.
I recommend this book to any physicist who wants to master this exciting
subject.

Steven Weinberg

Series Editor

Cambridge Monographs on Mathematical Physics
1998
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Preface

When I first decided to write a book on string theory, more than ten years
ago, my memories of my student years were much more vivid than they
are today. Still, I remember that one of the greatest pleasures was finding
a text that made a difficult subject accessible, and I hoped to provide the
same for string theory.

Thus, my first purpose was to give a coherent introduction to string
theory, based on the Polyakov path integral and conformal field theory.
No previous knowledge of string theory is assumed. I do assume that the
reader is familiar with the central ideas of general relativity, such as metrics
and curvature, and with the ideas of quantum field theory through non-
Abelian gauge symmetry. Originally a full course of quantum field theory
was assumed as a prerequisite, but it became clear that many students
were eager to learn string theory as soon as possible, and that others had
taken courses on quantum field theory that did not emphasize the tools
needed for string theory. I have therefore tried to give a self-contained
introduction to those tools.

A second purpose was to show how some of the simplest four-
dimensional string theories connect with previous ideas for unifying the
Standard Model, and to collect general results on the physics of four-
dimensional string theories as derived from world-sheet and spacetime
symmetries. New developments have led to a third goal, which is to intro-
duce the recent discoveries concerning string duality, M-theory, D-branes,
and black hole entropy.

In writing a text such as this, there is a conflict between the need to
be complete and the desire to get to the most interesting recent results
as quickly as possible. I have tried to serve both ends. On the side of
completeness, for example, the various path integrals in chapter 6 are
calculated by three different methods, and the critical dimension of the
bosonic string is calculated in seven different ways in the text and exercises.

XV



Xvi Preface

On the side of efficiency, some shorter paths through these two volumes
are suggested below.

A particular issue is string perturbation theory. This machinery is nec-
essarily a central subject of volume one, but it is somewhat secondary to
the recent nonperturbative developments: the free string spectrum plus
" the spacetime symmetries are more crucial there. Fortunately, from string
perturbation theory there is a natural route to the recent discoveries, by
way of T-duality and D-branes.

One possible course consists of chapters 1-3, section 4.1, chapters 5-8
(omitting sections 5.4 and 6.7), chapter 10, sections 11.1, 11.2, 11.6, 12.1,
and 12.2, and chapters 13 and 14. This sequence, which I believe can be
covered in two quarters, takes one from an introduction to string theory
through string duality, M-theory, and the simplest black hole entropy
calculations. An additional shortcut is suggested at the end of section 5.1.

Readers interested in T-duality and related stringy phenomena can
proceed directly from section 4.1 to chapter 8. The introduction to Chan-
Paton factors at the beginning of section 6.5 is needed to follow the
discussion of the open string, and the one-loop vacuum amplitude, ob-
tained in chapter 7, is needed to follow the calculation of the D-brane
tension.

Readers interested in supersymmetric strings can read much of chap-
ters 10 and 11 after section 4.1. Again the introduction to Chan—Paton
factors is needed to follow the open string discussion, and the one-loop
vacuum amplitude is needed to follow the consistency conditions in sec-
tions 10.7, 10.8, and 11.2.

Readers interested in conformal field theory might read chapter 2,
sections 6.1, 6.2, 6.7, 7.1, 7.2, 8.2, 8.3 (concentrating on the CFT as-
pects), 8.5, 10.1-10.4, 11.4, and 11.5, and chapter 15. Readers interested in
four-dimensional string theories can follow most of chapters 16-19 after
chapters 8, 10, and 11.

In a subject as active as string theory — by one estimate the literature
approaches 10000 papers — there will necessarily be important subjects
that are treated only briefly, and others that are not treated at all. Some of
these are represented by review articles in the lists of references at the end
of each volume. The most important omission is probably a more complete
treatment of compactification on curved manifolds. Because the geometric
methods of this subject are somewhat orthogonal to the quantum field
theory methods that are emphasized here, I have included only a summary
of the most important results in chapters 17 and 19. Volume two of Green,
Schwarz, and Witten (1987) includes a more extensive introduction, but
this 1s a subject that has continued to grow in importance and clearly
deserves an introductory book of its own.

This work grew out of a course taught at the University of Texas



Preface xvii

at Austin in 1987-88. The original plan was to spend a year turning the
lecture notes into a book, but a desire to make the presentation clearer and
more complete, and the distraction of research, got in the way. An early
prospectus projected the completion date as June 1989 + one month, off by
100 standard deviations. For eight years the expected date of completion
remained approximately one year in the future, while one volume grew
into two. Happily, finally, one of those deadlines didn’t slip.

I have also used portions of this work in a course at the University of
California at Santa Barbara, and at the 1994 Les Houches, 1995 Trieste,
and 1996 TASI schools. Portions have been used for courses by Nathan
Seiberg and Michael Douglas (Rutgers), Steven Weinberg (Texas), Andrew
Strominger and Juan Maldacena (Harvard), Nathan Berkovits (Sdo Paola)
and Martin Einhorn (Michigan). I would like to thank those colleagues
and their students for very useful feedback. I would also like to thank
Steven Weinberg for his advice and encouragement at the beginning
of this project, Shyamoli Chaudhuri for a thorough reading of the entire
manuscript, and to acknowledge the support of the Departments of Physics
at UT Austin and UC Santa Barbara, the Institute for Theoretical Physics
at UC Santa Barbara, and the National Science Foundation.

During the extended writing of this book, dozens of colleagues have
helped to clarify my understanding of the subjects covered, and dozens of
students have suggested corrections and other improvements. I began to
try to list the members of each group and found that it was impossible.
Rather than present a lengthy but incomplete list here, I will keep an
updated list at the erratum website

http://www.itp.ucsb.edu/~joep/bigbook.html.

In addition, I would like to thank collectively all who have contributed to
the development of string theory; volume two in particular seems to me
to be largely a collection of beautiful results derived by many physicists.
String theory (and the entire base of physics upon which it has been built)
is one of mankind’s great achievements, and it has been my privilege to
try to capture its current state.

Finally, to complete a project of this magnitude has meant many sac-
rifices, and these have been shared by my family. I would like to thank
Dorothy, Steven, and Daniel for their understanding, patience, and sup-
port.

Joseph Polchinski
Santa Barbara, California
1998



Notation

This book uses the +++ conventions of Misner, Thorne, & Wheeler
(1973). In particular, the signature of the metric is (— + +...+). The
constants /i and c are set to 1, but the Regge slope « is kept explicit.

A bar ~ is used to denote the conjugates of world-sheet coordinates and
moduli (such as z, T and g), but a star * is used for longer expressions. A
bar on a spacetime fermion field is the Dirac adjoint (this appears only
in volume two), and a bar on a world-sheet operator is the Euclidean
adjoint (defined in section 6.7). For the degrees of freedom on the string,
the following terms are treated as synonymous:

holomorphic = left-moving,
antiholomorphic = right-moving,

as explamed in section 2.1. Our convention is that the supersymmetric
side of the heterotic string is right-moving. Antiholomorphic operators
are designated by tildes ~; as explained in section 2.3, these are not the
adjoints of holomorphic operators. Note also the following conventions:

&z =2xdy, 5%(z,2) = =6(x)8(y)

N —

where z = x + iy is any complex variable; these differ from most of the
literature, where the coefficient is 1 in each definition.

Spacetime actions are written as § and world-sheet actions as S. This
presents a problem for D-branes, which are T-dual to the former and
S-dual to the latter; S has been used arbitrarily. The spacetime metric is
Guv, while the world-sheet metric is y,, (Minkowskian) or g (Euclidean).
In volume one, the spacetime Ricci tensor is R,, and the world-sheet Ricci
tensor is Ryp. In volume two the foriner appears often and the latter never,
so we have changed to R,, for the spacetime Ricci tensor.
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Notation Xix

The following are used:

defined as

equivalent to

approximately equal to

equal up to nonsingular terms (OPEs), or rough correspondence.

SRR

¢
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10

Type I and typé I1 superstrings

Having spent volume one on a thorough development of the bosonic
string, we now come to our real interest, the supersymmetric string the-
ories. This requires a generalization of the earlier framework, enlarging
the world-sheet constraint algebra. This idea arises naturally if we try to
include spacetime fermions in the spectrum, and by guesswork we are led
to superconformal symmetry. In this chapter we discuss the (1,1) supercon-
formal algebra and the associated type I and II superstrings. Much of
the structure is directly parallel to that of the bosonic string so we can
proceed rather quickly, focusing on the new features.

10.1 The superconformal algebra

In bosonic string theory, the mass-shell condition

pupt +m? =0 (10.1.1)
came from the physical state condition
Loly) =0, (10.1.2)

and also from Lo|p) = 0 in the closed string. The mass-shell condition
is the Klein—-Gordon equation in momentum space. To get spacetime
fermions, it seems that we need the Dirac equation

ip L% +m=0 (10.1.3)

instead. This is one way to motivate the following generalization, and it
will lead us to all the known consistent string theories.

Let us try to follow the pattern of the bosonic string, where Ly and Lo
are the center-of-mass modes of the world-sheet energy-momentum tensor
(T, T). A subscript B for ‘bosonic’ has been added to distinguish these
from the fermionic currents now to be introduced. It seems then that we

1



2 10 Type I and type II superstrings

need new conserved quantities Tr and Tr, whose center-of-mass modes
give the Dirac equation, and which play the same role as Tp and Tp in
the bosonic theory. Noting further that the spacetime momenta p* are the
center-of-mass modes of the world-sheet current (0X*,dX*), it is natural
to guess that the gamma matrices, with algebra

{THTV} =29, (10.1.4)

are the center-of-mass modes of an anticommuting world-sheet field y*.
With this in mind, we consider the world-sheet action

S=— / d*z ( 0X*3X, +w“awu+w“aw“). (10.1.5)

For reference we recall from chapter 2 the X X operator product expansion
(OPE)

/

XH(2,7)X"(0,0) ~ —%nf“ In|z)?. (10.1.6)

The p conformal field theory (CFT) was described in section 2.5. The
fields w# and P* are respectively holomorphic and antiholomorphic, and
the operator products are

yay puv

PO~ 0~
The world-sheet supercurrents
Tr(z) = i(2/«)*9H(2)X(z) . Tr(z) = i2/o)/*pH(2)0X,(z) (10.1.8)

are also respectively holomorphic and antiholomorphic, since they are just
the products of (anti)holomorphic fields. The annoying factors of (2/«)!/2
could be eliminated by working in units where o = 2, and then be restored
if needed by dimensional analysis. Also, throughout this volume the : :
normal ordering of coincident operators will be implicit

This gives the desired result: the modes yf and { will satisfy the
gamma matrix algebra, and the centers-of-mass of Tr and Tr will have
the form of Dirac operators. We will see that the resulting string theory
has spacetime fermions as well as bosons, and that the tachyon is gone.

From the OPE and the Ward identity it follows (exercise 10.1) that the
currents

(10.1.7)

J'2) =n()Te(z), J'2) = 7i(2)Tr(2) (10.1.9)
generate the superconformal transformation
€' (2/o) 26 XM (z,2) = —n(z)w*(z) —n(2)*P*() , (10.1.10a)
e~ 1o 12)*0pH(z) = n(2)0X*(z) , (10.1.10b)
e Yo' /2)25pH(2) = n(z)"0XH@3) . (10.1.10c)



10.1 The superconformal algebra 3

This transformation mixes the commuting field X# with the anticommut-
ing fields w* and ¥, so the parameter 7(z) must be anticommuting. As
with conformal symmetry, the parameters are arbitrary holomorphic or
antiholomorphic functions. That this is a symmetry of the action (10.1.5)
follows at once because the current is (anti)holomorphic, and so con-
served.

The commutator of two superconformal transformations is a conformal
transformation,

Oy Oy — Oy O, = 05, 0(2) = —2m1(z)n2(2) , (10.1.11)

as the reader can check by acting on the various fields. Similarly, the
commutator of a conformal and superconformal transformation is a su-
perconformal transformation. The conformal and superconformal trans-
formations thus close to form the superconformal algebra. In terms of the
currents, this means that the OPEs of Tr with itself and with

Tg = —%6X“6X,1 — %w“aw“ (10.1.12)
close. That is, only Tp and TF appear in the singular terms:
3D 2 1
Tp(z)Te(0) ~ — + = T8(0) + -0T5(0) , (10.1.13a)
4z Z z
3 1
Tg(z)Tr(0) ~ ETF(O) + ;8TF(0) ) (10.1.13b)
D 2
Tr(z)Tr(0) ~ 3 + ;TB(O) , - (10.1.13¢)

and similarly for the antiholomorphic currents. The TpTr OPE implies
that TF is a tensor of weight (%,0). Each scalar contributes 1 to the central

charge and each fermion 3, for a total
c=(1+3$D=3D. (10.1.14)

This enlarged algebra with T and TF as well as Tp and Ts will play
the same role that the conformal algebra did in the bosonic string. That
is, we will impose it on the states as a constraint algebra — it must
annihilate physical states, either in the sense of old covariant quantization
(OCQ) or of Becchi-Rouet-Stora—-Tyutin (BRST) quantization. Because
of the Minkowski signature of spacetime the timelike p° and §°, like
X°, have opposite sign commutators and lead to negative norm states.
The fermionic constraints Tr and TF will remove these states from the
spectrum.

More generally, the N = 1 superconformal algebra in operator product
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form is
To(2)Ta(0) ~ 55 + : TB(0)+ IBTB(O) (10.1.15a)
Ta(z) T¢(0) ~ TF(O) i aTF(O) (10.1.15b)
Te(z) TF(0) ~ 3%3 + %TB(O) ; (10.1.15¢)

The Jacobi identity requires the same constant ¢ in the TgTg and TrTF
products (exercise 10.5). Here, N = 1 refers to the number of (%,0)
currents. In the present case there is also an antiholomorphic copy of the
same algebra, so we have an (N,N) = (1,1) superconformal field theory
(SCFT). We will consider more general algebras in section 11.1.

Free SCFTs

The various free CFTs described in chapter 2 have superconformal gen-
eralizations. One free SCFT combines an anticommuting bc theory with
a commuting fy system, with weights

e g g Ergs g (10.1.16a)
hi=A-ko hei—i (10.1.16b)

The action is
A %/dzz (bdc + B3y) , (10.1.17)

and’

Ts = (8b)c — Ad(be) + (3B)y — l(2,1 —1)3(By), (10.1.18a)

=__(5[;) +L6(ﬂc) 2by . (10.1.18b)

The central charge is
[-3Q2A— 12+ 1]+ [3(24—2)*—1] =9—124. (10.1.19)

Of course there is a corresponding antiholomorphic theory.

We can anticipate that the superconformal ghosts will be of this form
with A = 2, the anticommuting (2,0) ghost b being associated with the
commuting (2,0) constraint T as in the bosonic theory, and the commut-
ing (%, 0) ghost B being associated with the anticommuting (%, 0) constraint
Tr. The ghost central charge is then —26 + 11 = —15, and the condition
that the total central charge vanish gives the critical dimension

0= %D —15=D=10. (10.1.20)



