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PREFACE

This book is an outgrowth of a year course in statistical mechanics that
I have been giving at the Massachusetts Institute of Technology. It is
directed mainly to graduate students in physics.

The purpose of the book is to teach statistical mechanics as an integral
part of theoretical physics, a discipline that aims to describe all natural
phenomena on the basis of a single unifying theory. This theory, at
present, is quantum mechanics.

This does not mean that the sole concern of this book is the derivation
of statistical mechanics from quantum mechanics, because such a pre-
occupation would not serve the purpose of teaching. Furthermore, such
a derivation does not at present exist.

In this book the starting point of statistical mechanics is taken to be
certain phenomenological postulates, whose relation to quantum mechan-
ics I try to state as clearly as I can, and whose physical consequences
I try to derive as simply and directly as I can.

Before the subject of statistical mechanics proper is presented, a brief
but self-contained discussion of thermodynamics and the classical kinetic
theory of gases is given. The order of this development is imperative,
from a pedagogical point of view, for two reasons. First, thermodynamics
has successfully described a large part of macroscopic experience, which
is the concern of statistical mechanics. It has done so not on the basis of
molecular dynamics but on the basis of a few simple and intuitive
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postulates stated in everyday terms. 1f we first familiarize ourselves with
thermodynamics, the task of statistical mechanics reduces to the explana-
tion of thermodynamics. Second, the classical kinetic theory of gases is
the only known special case in which thermodynamics can be derived
nearly from first principles, i.e., molecular dynamics. A study of this
special case will help us understand why statistical mechanics works.

A large part of this book is devoted to selected applications of statistical
mechanics. The selection is guided by the interest of the topic to physicists,
its value as an illustration of calculating techniques, and my personal
taste.

To read the first half of the book the reader needs a good knowledge
of classical mechanics and some intuitive feeling for thermodynamics and
kinetic theory. To read the second half of the book he needs to have a
working knowledge of quantum mechanics. The mathematical knowledge
required of the reader does not exceed what he should have acquired in
his study of classical mechanics and quantum mechanics.

Certain passages in the book set in reduced type may be omitted on
first reading. At the end of most chapters a set of problems is included.
They are designed to illustrate or to extend the discussion given in the
text. The serious reader should consider them to be an integral part of
the book.

The material in this book probably cannot be completely covered in a
year’s study. It might be helpful, therefore, to give a list of chapters that
form the “hard core” of the book. They are the following: Chapters 3,
4, 7, 8 (possibly excluding Sections 8.5, 8.6, and 8.7), 9, 11, and 12.

KERsON HUANG
Cambridge. Massachusetts
February 1963

ACKNOWLEDGMENT

I am indebted to my wife for preparing the index, and to Professor
M. J. Klein of the Case Institute of Technology for several useful com-
ments on the manuscript of this book.



CONTENTS

CHAPTER

CHAPTER

o

2.1

2.2
2.3
2.4

CHAPTER 3

3.1
3.2
3.3

THERMODYNAMICS AND KINETIC THEORY

THE LAWS OF THERMODYNAMICS, 3

Preliminaries, 3

The First Law of Thermodynamics, 7

The Second Law of Thermodynamics, 10

Entropy, 15

Some Immediate Consequences of the Second Law, 20
Thermodynamic Potentials, 23

The Third Law of Thermodynamics, 26

SOME APPLICATIONS OF THERMODYNAMICS,
33

Thermodynamic Description of Phase Transitions, 33
Surface Effects in Condensation, 38

Van der Waals Equation of State, 40

Osmotic Pressure, 46

THE PROBLEM OF KINETIC THEORY, 55

Formulation of the Problem, 55
Binary Collisions, 59
Boltzmann Transport Equation, 65



x Contents

CHAPTER 4 THE EQUILIBRIUM STATE OF A DILUTE GAS, 68

4.1 Boltzmann’s H Theorem, 68

4.2 The Maxwell-Boltzmann Distribution, 70

4.3 The Method of the Most Probable Distribution, 75
4.4 Analysis of the H Theorem, 84

4.5 Two “Paradoxes,” 88

4.6 Validity of the Boltzmann Transport Equation, 89

CHAPTER 5 TRANSPORT PHENOMENA, 93

5.1 The Mean Free Path, 93

5.2 The Conservation Laws, 95

5.3 The Zero-Order Approximation, 99
5.4 The First-Order Approximation, 103
5.5 Viscosity, 107

5.6 Viscous Hydrodynamics, 111

5.7 The Navier-Stokes Equation, 112
5.8 Examples in Hydrodynamics, 116

CHAPTER 6 THE CHAPMAN-ENSKOG METHOD, 124

6.1 Purpose of the Method, 124

6.2 The Chapman-Enskog Expansion, 125
6.3 Existence of Solutions, 129

6.4 The First-Order Approximation, 132

B STATISTICAL MECHANICS

CHAPTER 7 CLASSICAL STATISTICAL MECHANICS, 139

7.1 The Postulate of Classical Statistical Mechanics, 139
7.2 Microcanonical Ensemble, 143

7.3 Derivation of Thermodynamics, 147

7.4 Equipartition Theorem, 149

7.5 Classical Ideal Gas, 151

7.6 Gibbs Paradox, 153

CHAPTER 8 CANONICAL ENSEMBLE AND GRAND
CANONICAL ENSEMBLE, 156

8.1 Canonical Ensemble, 156

8.2 Energy Fluctuations in the Canonical Ensemble, 159

8.3 Grand Canonical Ensemble, 162

8.4 Density Fluctuations in the Grand Canonical Ensemble,
165



8.5

8.6
8.7

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7

CHAPTER 10

10.1
10.2
10.3

CHAPTER I1

11.1
11.2
1.3
11.
1.

[

CHAPTER 12
12.1
12.2
12.3
12.4

CHAPTER 13

13.1
13.2
13.3
13.4
13.5

CHAPTER 14
14.1

Contents Xi

Equivalence of the Canonical Ensemble and the Grand
Canonical Ensemble, 168

Behavior of W(N), 172

The Meaning of the Maxwell Construction, 174

QUANTUM STATISTICAL MECHANICS, 183

The Postulates of Quantum Statistical Mechanics, 183
Density Matrix. 186

Ensembles in Quantum Statistical Mechanics, 188
Third Law of Thermodynamics, 191

The 1deal Gases: Microcanonical Ensemble, 192

The Ideal Gases: Grand Canonical Ensemble, 197
Foundations of Statistical Mechanics, 202

THE PARTITION FUNCTION, 206

Darwin-Fowler Method, 206
Classical Limit of the Partition Function, 213
The Variational Principle, 220

IDEAL FERMI GAS, 224

Equation of State of an Ideal Fermi Gas, 224
Theory of White Dwarf Stars, 230

Landau Diamagnetism, 237

De Haas-Van Alphen Effect, 243

Pauli Paramagnetism, 246

IDEAL BOSE GAS, 253

Photons, 253

Phonons, 258

Bose-Einstein Condensation, 262

Alternative Treatment of Bose-Einstein Condensation,
270

IMPERFECT GASES AT LOW TEMPERA-
TURES, 274

Definition of the Problem, 274

Method of Pseudopotentials in Two-Body Problems, 275
Method of Pseudopotentials in N-Body Problems, 280
An Imperfect Fermi Gas, 282

An Imperfect Bose Gas, 289

CLUSTER EXPANSIONS, 297
Classical Cluster Expansion, 297



xit Contents

14.2
14.3

CHAPTER 15

L

n n
SO0 -

C
CHAPTER 16

16.1
16.2
16.3
16.4
16.5

CHAPTER 17

17.1
17.2
17.3

CHAPTER 18

18.1
18.2
18.3
18.4
18.5
18.6
18.7

CHAPTER 19

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Quantum Cluster Expansion. 303
The Second Virial Coefficient, 307

PHASE TRANSITIONS, 313

Formulation of the Problem. 313
The Theory of Yang and Lee, 316
The Gas Phase, 320

Van Hove's Theorem, 321

SPECIAL TOPICS IN STATISTICAL MECHANICS

THE ISING MODEL, 329

Definition of the Ising Model, 329

Equivalence of the Ising Model to Other Models, 332
Bragg-Williams Approximation, 236

Bethe-Peierls Approximation, 341

One-Dimensional Ising Model, 346

THE ONSAGER SOLUTION, 349

Formulation of Two-Dimensional Ising Model, 349
Mathematical Digression. 355
The Solution, 359

LIQUID HELIUM, 374

The /Z-Transition, 374

Tisza's Two-Fluid Model, 379

The Theories of Landau and Feynman, 381
Equilibrium Properties Near Absolute Zero, 392
Motion of the Superfluid, 393

Kinetic Theory Near Absolute Zero, 397
Superfluidity, 405

HARD-SPHERE BOSE GAS, 409

Statement of the Problem, 409

Perturbation Theory. 410

A New Perturbation Method, 416

The Ground State and Low Excited States, 420
Higher Excited States, 428

Critical Discussion, 433

Macroscopic Properties, 435



Contents xiii
D APPENDICES
APPENDIX A N-BODY SYSTEM OF IDENTICAL
PARTICLES, 439

A.l The Two Kinds of Statistics, 439
A.2  N-Body Wave Functions, 441
A.3 Method of Quantized Fields, 448

APPENDIX B THE PSEUDOPOTENTIAL, 455

APPENDIX C THE THEOREMS OF YANG AND LEE, 458

C.1 Two Lemmas, 458
C.2 Theorem I of Yang and Lee, 461
C.3 Theorem 2 of Yang and Lee, 463

INDEX, 465



A
THERMODYNAMICS AND
KINETIC THEORY



ML FELSRKFEEZLNSE:  www. ertongbook. com



chapter [
THE LAWS OF
THERMODYNAMICS

1.1 PRELIMINARIES

Thermodynamics is a phenomenological theory of matter. As such, it
draws its concepts directly from experiments. The following is a list of
some working concepts which the physicist, through experience, has
found it convenient to introduce. We shall be extremely brief, as the
reader is assumed to be familiar with these concepts.

(a) A thermodynamic system is any macroscopic system.

(b) Thermodynamic parameters are measurable macroscopic quantities
associated with the system, such as the pressure P, the volume V, the
temperature 7, and the magnetic field B. They are defined experimentally.

(¢) A thermodynamic state is specified by a set of values of all the
thermodynamic parameters necessary for the description of the system.

(d) Thermodynamic equilibrium prevails when the thermodynamic state
of the system does not change with time.

(e) The equation of state is a functional relationship among the thermo-
dynamic parameters for a system in equilibrium. If P, ¥, and T are the
thermodynamic parameters of the system, the equation of state takes the

form
fP,V, T)=0

which reduces the number of independent variables of the system from three
to two. The function f is assumed to be given as part of the specification
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4 Thermodynamics and Kinetic Theory

An equilibrium
~ state

Surface of
— equation
of state

Fig. 1.1. Geometrical representation of the equation of state.

of the system. It is customary to represent the state of such a system
by a point in the three-dimensional P-V-7 space. The equation of state
then defines a surface in this space, as shown in Fig. 1.1. Any point lying
on this surface represents a state in equilibrium. In thermodynamics a
state automatically means a state in equilibrium unless otherwise specified.

(f) A thermodynamic transformation is a change of state. If the initial
state is an equilibrium state, the transformation can be brought about
only by changes in the external condition of the system. The transforma-
tion is guasi-static if the external condition changes so slowly that at any
moment the system is approximately in equilibrium. It is reversible if the
transformation retraces its history in time when the external condition
retraces its history in time. A reversible transformation is quasi-static,
but the converse is not necessarily true. For example, a gas that freely
expands into successive infinitesimal volume elements undergoes a quasi-
static transformation but not a reversible one.

(g) The P-V diagram of a system is the projection of the surface of the
equation of state onto the P-V plane. Every point on the P-V diagram
therefore represents an equilibrium state. A reversible transformation is a
continuous path on the P-V diagram. Reversible transformations of
specific types give rise to paths with specific names, such as isotherms,
adiabatics, etc. A transformation that is not reversible cannot be so
represented.

(#) The concept of work is taken cver from mechanics. For example, for
a system whose parameters are 2, ¥, and 7, the work ¢/ done by a system
in an infinitesimal transformation in which the volume increases by dV
is given by

dW = PdV
Generalization to other cases is obvious.

(i) Heat is what is absorbed by a homogeneous system if its temperature
increases while no work is done. If AQ is a small amount of the heat
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absorbed, and AT is the small change in temperature accompanying the
absorption of heat, the heat capacity C is defined by

AQ = CAT

The heat capacity depends on the detailed nature of the system and is
given as a part of the specification of the system. It is an experimental
fact that, for the same A7, AQ is different for different ways of heating up
the system. Correspondingly, the heat capacity depends on the manner
of heating. Commonly considered heat capacities are C}, and Cp, which
respectively correspond to heating at constant ¥ and P. Heat capacities
per unit mass o1 per mole of a substance are called specific heats.
(j) A heat reservoir, or simply reservoir, is a system so large that the gain
or loss of any finite amount of hzat does not change its temperature.
(k) A system is thermally isolated if no heat exchange can take place
between it and the external world. Thermal isolation may be achieved by
surrounding a system with an adiabatic wall. Any transformation the
system can undergo in thermal isolation is said to take place adiabatically.
(/) A thermodynamic quantity is said to be extensive if it is proportional
to the amount of substance in the system under consideration and is said
to be intensive if it is independent of the amount of substance in the system
under consideration. It is an important empirical fact that to a good
approximation thermodynamic quantities are either extensive or intensive.
(m) The ideal gas is an important idealized thermodynamic system.
Experimentally all gases behave in a universal way when they are suffi-
ciently dilute. The ideal gas is an idealization of this limiting behavior.
The parameters for an ideal gas are pressure P, volume ¥V, temperature 7,
and number of molecules N. The equation of state is given by Boyle’s
law:

PV
N = constant (for constant temperature)

The value of this constant depends on the experimental scale of temperature
used.

(n) The equation of state of an ideal gas in fact defines a temperature
scale, the ideal-gas temperature T

PV = NkT
where
k = 1.38 x 1071 erg/deg

which is called Boltzmann’s constant. Its value is determined by the con-
ventional choice of temperature intervals, namely, the Centigrade degree.
This scale has a universal character because the ideal gas has a universal
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character. The origin 7 = 0 is here arbitrarily chosen. Later we see that
it actually has an absolute meaning according to the second law of thermo-
dynamics.

To construct the ideal-gas temperature scale we may proceed as follows.
Measure PV/Nk of an ideal gas at the temperature at which water boils
and at which water freezes. Plot these two points and draw a straight line
through them, as shown in Fig. 1.2. The intercept of this line with the
abscissa is chosen to be the origin of the scale. The intervals of the tem-
perature scale are so chosen that there are 100 equal divisions between the
boiling and the freezing points of water. The resulting scale is the Kelvin
scale (°K). To use the scale, bring anything whose temperature is to be
measured into thermal contact with an ideal gas (e.g., helium gas at
sufficiently low density), measure PV/Nk of the ideal gas, and read off
the temperature from Fig. 1.2. An equivalent form of the equation of state
of an ideal gas is

PV = nRT

where 7 is the number of moles of the gas and R is the gas constant:
R = 8.315 joule/deg
= 1.986 cal/deg
= 0.0821 liter-atm/deg
Its value follows from the value of Boltzmann’s constant and Avogadro’s

number:
Avogadro’s number = 6.205 x 10% atoms/mole

Most of these concepts are properly understood only in molecular
terms. Here we have to be satisfied with empirical definitions.

In the following we introduce thermodynamic laws, which may be re-
garded as mathematical axioms defining a mathematical model. It is
possible to deduce rigorous consequences of these axioms, but it is

PV/Nk

\

i

|

!

i

l

/ | 100 divisions }
e

0 Freezing Boiling
point of point of
water water

Fig. 1.2. The ideal-gas temperature scale.
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important to remember that this model may not rigorously correspond to
the physical world; the thermodynamic laws may not be rigorous con-
sequences of the molecular laws, which we take to be the fundamental
laws of the physical world. The thermodynamic laws, then, are introduced
only as phenomenological statements that conveniently summarize
macroscopic experience. As such, they must be at least approximately
true for the physical world. The relation between thermodynamic laws
and molecular laws is discussed later, in kinetic theory.

Thermodynamics, as a mathematical model, can be axiomatized, in the
best tradition of mathematics. Nevertheless, in view of the foregoing
discussion, such a formulation contributes little to the understanding of
physics.

1.2 THE FIRST LAW OF THERMODYNAMICS

In an arbitrary thermodynamic transformation let AQ denote the net
amount of heat absorbed by the system and AW the net amount of work
done by the system. The first law of thermodynamics states that the
quantity AU, defined by

AU =AQ — AW (1.1)

is the same for all transformations leading from a given initial state to a
given final state.

This immediately defines a state function U, called the internal energy.
Its value for any state may be found as follows. Choose an arbitrary
fixed state as reference. Then the internal energy of any state is AQ — AW
in any transformation which leads from the reference state to the state in
question. It is defined only up to an arbitrary additive constant. Empiri-
cally U is an extensive quantity. This follows from the saturation property
of molecular forces, namely, that the energy of a substance is doubled
if its mass is doubled.

The experimental foundation of the first law is Joule’s demonstration
of the equivalence between heat and mechanical energy—the feasibility of
converting mechanical work completely into heat. The inclusion of heat
as a form of energy leads naturally to the inclusion of heat in the state-
ment of the conservation of energy. The first law is precisely such a
statement.

In an infinitesimal transformation, the first law reduces to the statement
that the differential

dU = dQ — dW (1.2)

is exact. That is, there exists a function U whose differential is dU; or,
the integral [dU is independent of the path of the integration and depends
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only on the limits of integration. This property is obviously not shared
by dQ or dWV.

Given a differential of the form df = g(A, B)dA + h(A, B) dB, the
condition that df be exact is dg/0B = dh/0A. Let us explore some of the
consequences of the exactness of dU. Consider a system whose parameters
are P, V. T. Any pair of these three parameters may be chosen to be the
independent variables that completely specify the state of the system.
The other parameter is then determined by the equation of state. We
may, for example, consider U = U(P, V). Then*

ouU Y
U= \—=) dP + {—]) dV 1.3
‘ (al’)r ‘ (.5V)1' (1-3)
The requirement that dU be exact immediately leads to the result
9 L(aﬂ) } _9 L(a_Q) ] (1.4)
ovL\oPvlr oP L \oV/plv

The following equations, expressing the heat absorbed by a system
during an infinitesimal reversible transformation (in which dW = P dV),
are easily obtained by successively choosing as independent variables the
pairs (P, V), (P, T), and (V, T):

o = (Z—g)r dP + [ g%)}) + P} av (1.5)
do=[ (%), + (), e+ [ G, +#(5p) ] or o
g = (g—;])y dT + [(g—g)T 4+ P] v (1.7)

Called dQ equations, these are of little practical use in their present form,
because the partial derivatives that appear are usually unknown and
inaccessible to direct measurement. They will be transformed to more
useful forms when we come to the second law of thermodynamics.

It can be immediately deduced from the dQ equations that

o= (%)= 6ol =
er=(3).= 7). 0s)

where H = U + PV is called the enthalpy of the system.

* The symbol (2U/3P), denotes the partial derivative of U with respect to P, with ¥
held constant.



