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Preface

In this text, we have sought to collect and organize most of
the important writings dealing with the application of geometric
programming to real-world problems. These include research
papers which have appeared in journals of mathematics, optimiza-
tion, and engineering, plus reports of successful applications of
the technique which have been published in books, company reports,
and technical journals. The primary purpose of this text is to
introduce the entire modern theory of geometric programming at an
applied level for the first time. The principal mathematics re-
quired are elementary linear algebra and a first course in advan-
ced calculus.

Representing as it does one of the most powerful tools yet
developed in optimization theory, geometric programming naturally
holds great interest for the practical professions of operations
research, management science, economics, and mathematics. The
greatest impact of geometric programming is being felt in the
area of engineering design, and many examples of successful ap-
plications in this area are described in the text. It is not
surprising that this new technique holds such great interest for
engineers, since the principal motivation of the engineering pro-
fession has been to find better designs and design methods. Al-
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though optimization methods have enjoyed wide application in
planning and scheduling operations for existing manufacturing
systems, their use in the design of new systems is only just be-
ginning. The principal reason for this lag is that the optimiza-
tion methods most widely used are not well suited for design
problems, which typically contain highly nonlinear constraints.
A11 this is beginning to change now that geometric programming,
with its rapid and elegant solution techniques, has been made
available to the designer. One of the basic strengths of this
new method lies in its power to transform a mathematical pro-
gramming problem having nonlinear inequality constraints into an
equivalent mathematical program constrained only by Tlinear
equalities. In practice, this means that more realistic models
without questionable linearizations can be used with no increase
in computational effort. Another important attribute of geo-
metric programming is the uncovering of invariant physical, geo-
metric, and technological considerations, which often do not de-
pend on such transient economic conditions as prices. The pre-
sence of invariance properties is one well known to engineering
estimators--designs may change, but cost ratios often remain
relatively constant. Of particular interest to the design engi-
neer will be Chapters 3, 5, 8 and 11; production engineers and
management will want to include Chapter 4 as well.

0f striking importance in geometric programming is the
fundamental approach to analyzing problems. One looks for the
distribution of the unknown optimum cost among the various com-
ponents of a system before optimizing the cost itself. More
remarkable, this distribution is sometimes unaffected by changes
in the cost coefficients of the individual terms. This separa-
tion of technological effects, as reflected by the exponents on
the design variables, from the economic effects, as measured by
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the coefficients, is one of the attractive features of this ap-
proach. In addition, the minimum cost can be found before sol-
ving for the optimal values of the design variables which will
produce that minimum cost. This makes possible a check on the
economic feasibility of a project before going ahead with detail-
ed policy or design considerations. Finally, the method pro-
vides an important insight into the effect of changes in the
values of the cost coefficients on this optimal distribution (as
noted above, for some problems, these changes have little or no
effect).

Numerous other advantages to the use of geometric program-
ming for practical problem-solving will become apparent to the
reader, especially when he reaches the final chapter on selected
applications. We hope that we will succeed in alerting practi-
tioners from many disciplines to new possibilities for developing
better designs and more efficient operations of existing systems.
Written in what we believe to be straightforward and unpreten-
tious style and notation, this book is intended to promote the
widespread use and understanding of this most remarkable and
powerful optimization method.

We are indebted to many people for their part in making this
book possible. In particular, we wish to express our apprecia-
tion to R.E.D. Woolsey for writing Chapter 4, to Glenn Staats
for material from his doctoral dissertation used in Chapter 6,
to G. V. Reklaitis for writing Chapter 10, to Ron S. Dembo for
his major contribution to Chapter 11, and most especially to
Douglass J. Wilde. Dr. Wilde not only read the manuscript in
detail and provided many corrections, but also was responsible
for the original development of constrained derivatives, a
fundamental concept in mathematical programming. Furthermore,
the derivations of the geometric programming algorithms given in
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Chapters 3 and 5 are basically unchanged from those originally
set down by Doug Wilde in the book "Foundations of Optimization"
written with the senior author in 1967.

We offer our sincere gratitude to M. Avriel, M. J. Rijckaert,
P. G. Petropoulis, Franklin E. Grange, Ury Passy, Gary A.
Kochenberger, P. A. Beck and J. G. Ecker for allowing us to ex-
tract material from their publications in this field. Of course,
we are forever in the debt of Richard Duffin, Elmor Peterson,
and Clarence Zener for their original development of geometric
programming, including the general duality theory and the funda-
mental transformations for expressing optimization problems in
the proper posynomial form.

We also thank the many students at The University of Texas
and at Purdue who used rough drafts of several chapters in
courses taught by the authors. Finally, we are grateful for the
excellent typing and proof-reading assistance of Mary Lou Hibbs,
Suzi Patterson and Julie Underhill.

CHARLES S. BEIGHTLER
Austin, Texas

DON T. PHILLIPS
West Lafayette, Indiana
College Station, Texas
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1 Preliminaries

1.7 INTRODUCTION

Geometric programming is a relatively new technique, developed
for solving algebraic nonlinear proaramming problems subject to
linear or nonlinear constraints. Geometric programming algo-
rithms have recently been improved so that they now provide a
powerful tool for solving nonlinear programming problems in gen-
eral, and engineering design problems in particular. Geometric
programming first emerged in 1961 when Clarence Zener, then
Director of Science at Westinghouse Corporation, discovered that
many engineering design problems consisting of a sum of compo-
nent costs could sometimes be minimized almost by inspection
under suitable conditions [1]. Although Dr. Zener discovered
this remarkable fact through the process of engineering observa-
tion and inquiry, he soon realized that such an observation
should have roots in a deeper mathematical theory. Coinciden-
tally, Richard Duffin, then Professor of Mathematics at Carnegie-
Mellon University, was engaged in the development of a duality
theory with direct applications to nonlinear programmina prob-
lems. Professor Duffin learned of Dr. Zener's work while visit-
ing Westinghouse Corporation and soon solidified Dr. Zener's

discovery mathematically through application of his own recently
1



