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Preface

caminante no hay camino
se hace camino al andar..

Antonio Machado

The path-integral technique has proved to be a very powerful tool in
various areas of physics, both computationally and conceptually (Feyn-
man (1948); Feynman and Hibbs (1965); Schulman (1981); Langouche
et al. (1982); Wiegel (1986); Wio (1990); Kleinert (1990b); Khandekar and
Lawande (1986); Khandekar et al. (2000)). It often provides an alternative
route for the derivation of perturbation expansions as well as an excellent
framework for non perturbative analysis. However, with few exceptions
till recently, the subject of path-integrals was almost absent from standard
textbooks on quantum mechanics and statistical physics (Shankar (1980);
Felsager (1985); Das (1994)). As a consequence, students were missing a
topic relevant for its application in field theory as well as an alternative
approach to standard quantum and statistical mechanics that provides a
wealth of approximation methods. However, during the last decades, many
authors have tried to overcome this deficiency and have published several
papers on this subject with an obvious pedagogical aim. In this way top-
ics such as semiclassical approximations, barrier penetration, description of
bound and metastable states and non exponential decay, adiabatic propaga-
tors, quantization of constrained Hamiltonians, the density matrix, and the
harmonic oscillator with temperature and numerical methods among oth-
ers, have been discussed within this framework (Holstein (1981a,b, 1982);
Holstein and Swift (1982a,b); Mannheim (1983); Holstein (1983); MacK-
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eown (1985); Salem and Wio (1986); Sengupta (1986); Ajanapon (1987);
Larsen and Ravndal (1988); Donoghue and Holstein (1988); Gerry and
Kiefer (1988); Holstein (1988a,b, 1989); Fletcher (1990); Abramson et al.
(1991a); Cruz (1992)).

What seems to be still missing is an introductory presentation of
the path-integral technique within the realm of stochastic processes (Wio
(1999)). As a matter of fact, and from a historical point of view, it was
in this context that path-integrals were first discussed by Wiener (Wiener
(1923, 1924, 1930)), when he introduced a similar approach based on a sum
over trajectories—anticipating by two decades Feynman’s work on path in-
tegrals(Feynman (1948))—that were later applied by Onsager and Machlup
to some Markov out of equilibrium processes in order to describe diffusion-
like phenomena (Onsager and Machlup (1953a,b)).

The mathematical theory of stochastic processes has proven to be not
only a useful but also a necessary tool when studying physical, chemi-
cal and biological systems under the effect of fluctuations (Haken (1978);
van Kampen (2004); Risken (1983); Gardiner (2009); Mikhailov (1990);
Mikhailov and Loskutov (1992); Wio (1994); Nicolis (1995); Lindenberg and
Wio (2003); Wio, Deza and Lépez (2012)). Recent theoretical and experi-
mental studies have shown that there are even situations where fluctuations
(or noise) play an essential role triggering new phenomena, solely induced by
the presence of noise. A few examples of such situations are: some problems
related with self-organization and dissipative structures, noise induced tran-
sitions, noise-induced-phase-transitions, noise sustained patterns, Brownian
motors, stochastic resonance in zero-dimensional and in spatially extended
systems (Horsthemke and Lefever (1984); Moss (1992); van den Broeck
et al. (1994); Wiesenfeld and Moss (1995); Walgraef (1997); Mangioni et al.
(1997, 2000); Jiilicher et al. (1997); Gammaitoni et al. (1998); Reimann
(2002); Wio, et al. (2002); Lindner et al. (2004); Sagues et al. (2007); Wio
and Deza (2007)).

The aim of this short course is to offer a brief presentation of the path-
integral approach to stochastic processes. We will focus on Markov pro-
cesses, but a few aspects of non-Markov and non-Gaussian processes will
also be discussed. Before starting our presentation, I would like to list
a few more books, proceedings and review articles that, in addition to
those indicated before, are a useful complementary reference material to
this short introductory course and to the path integral approach in general
(Khandekar and Lawande (1975, 1986); Papadopoulos and Devreese (1978);
Marinov (1980); Brink (1985); Fox (1986); Sa-yakanit et al. (1989); Hinggi
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et al. (1990); Grosche and Steiner (1998); Cerdeira et al. (1992); Dykman
and Lindenberg (1994); Wio (1999); Mazzucchi (2009)).

These notes are based on courses on path integrals taught at the Insti-
tuto Balseiro (Universidad Nacional de Cuyo) and the Physics Department
(Universidad Nacional de Mar del Plata), in Argentina; at the Universitat
de les Illes Balears and Universidad de Cantabria in Spain, and summer
courses at San Luis, Argentina and St. Etienne de Tinée, France.

The material is organized as follows. For the sake of completeness, we
start making a brief review of stochastic processes. After that, we present a
derivation of the path integral representation for the propagator of Markov
processes. We describe next the path expansion method as adapted to
the present stochastic case. After that, we present a simple example of a
space-time transformation within the path integral framework. The results
of this transformation are exploited to proceed a little further on the path
expansion method. We also discuss some results for non-Markov and non-
Gaussian processes. Next we present a few aspects related to fractional
Brownian motion. We then analyze the usefulness of the Feynman-Kac
formula, and always within the stochastic framework, how to use an influ-
ence functional like procedure to eliminate irrelevant variables. Afterwards,
we discuss a few more applications to different diffusive-like problems. The
last chapter is devoted to comment on some aspects that have not been
touched upon in these notes.

I wish to express my thanks to G. Abramson, C. Batista, C.B. Briozzo,
C.E. Budde, F. Castro, P. Colet, R.R. Deza, G. Drazer, M.A. Fuentes, J.
Giampaoli, P. Hanggi, G. Iziis, M.N. Kuperman, K. Lindenberg, S. Man-
gioni, L. Pesquera, J.A. Revelli, M.A. Rodriguez, L..D. Salem, A. Séanchez,
M. San Miguel, L. Schulman, U. Smilanski, D. Strier, E. Tirapegui, R.
Toral, D.H. Zanette, for fruitful discussions and/or collaborations on the
path-integral approach to stochastic processes. I also thank the many stu-
dents who have endured with stoicism the courses on path-integrals that I
have taught. Last but not least, I thank V. Grunfeld for the critical reading
of an earlier version of the manuscript.

Horacio S. Wio
Santander, August 2012

Along this road

Goes no one,

This autumn eve
Matsuo Basho
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Chapter 1

Stochastic Processes: A Short Tour

1.1 Stochastic Process

We start this section by writing the evolution equation for a one dimensional
dynamical system (Haken (1978); Wio (1994); Nicolis (1995); Wio (1997))

Z—i=F(m,C), (1.1)
where z corresponds to the state variable while ¢ is a control parameter.
Such a parameter could be, for instance, the temperature, an external field,
a reactant’s controlled flux, ete, indicating the form in which the system
is coupled to its surroundings. Experience tells us that it is usually im-
possible to keep the value of such parameters fixed, and consequently that
fluctuations become relevant. Hence, the original deterministic equation
will acquire a random or stochastic character.

Among the many reasons justifying the growing interest in the study of
fluctuations we can point out that they present a serious impediment to ac-
curate measurements in very sensitive experiments, demanding some very
specific techniques in order to reduce their effects, and that the fluctuations
might be used as an additional source of information about the system. But
maybe the most important aspect is that fluctuations can produce macro-
scopic effects contributing to the appearance of some form of noise-induced
order like space-temporal patterns or dissipative structures (Horsthemke and
Lefever (1984); Nicolis (1995); Wio (1994); Walgraef (1997); Wio (1997);
Gammaitoni et al. (1998); Reimann (2002); Wio, et al. (2002); Lindner
et al. (2004); Sagues et al. (2007); Wio and Deza (2007); Wio, Deza and
Lépez (2012)).

The general character of the evolution equations of dynamical systems
makes it clear why stochastic methods have become so important in dif-
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ferent branches of physics, chemistry, biology, technology, population dy-
namics, economy, and sociology. In spite of the large number of different
problems that arise in all these fields, there are some common principles and
methods that are included in a global framework: the theory of stochastic
processes. Here we will only briefly review the few aspects relevant for our
present needs. For deeper study we refer to van Kampen (2004); Risken
(1983); Horsthemke and Lefever (1984); Gardiner (2009); Wio (1994); Lin-
denberg and Wio (2003); Wio, Deza and Lépez (2012).

In order to include the presence of fluctuations into our description, we
write ¢ = (o + £(t), where (p is a constant value and £(t) is the random or
fluctuating contribution to the parameter ¢. The simplest (or lowest order)
form that equation (1.1) can adopt is

B = b= F(r, o) + 9l GE(), (1.2
The original deterministic differential equation has been transformed into
a stochastic differential equation (SDE), where £(t) is called a noise term
or stochastic process.

Any stochastic process z(t) is completely specified if we know the com-
plete hierarchy of probability densities. We write

Po(B1.ti; Tosloy o Bpobn) dB1 A2 o, (1.3)

for the probability that z(¢1) is within the interval (z1,z; + dz1), z(t2) in
(z2,z2 + dx3), and so on. These P, may be defined for n = 1,2,...., and
only for different times. This hierarchy fulfills some properties

i) P, >0
ii) P, is invariant under permutations of pairs (z;,¢;) and (z;,t;)
zzz)f P, dx, = P,_,, and, f P, dxy = 1.

Another important quantity is the conditional probability density P, .,
that corresponds to the probability of having the value x; at time t;,z2
at to,...,z, at t,; given that we have z(t,11) = ZTni1,Z(tnia) =
Tnt+2, (tn+3) = Tntsy .-y Z(tntm) = Tnim- Its definition is

Pn/m(zla t1;.5%n,tn l In+lytn+l§--§$n+m7tn+m) =

_ Pn+m(xlx ty;.. 3 Znytn; Tngas tngl; ---;$n+matn+m)

P (Trt15tn415 5 Tndms tn+m)
(1.4)
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Among the many possible classes of stochastic processes, there is one
that plays a central role: Markov Processes (van Kampen (2004); Risken
(1983); Gardiner (2009); Wio (1994); Lindenberg and Wio (2003)). For a
stochastic process z(t),

P(z2,t3 | x1,t1)

is the conditional or transition probability that z(tz) takes the value s,
knowing that z(t;) has taken the value z;. From this definition and (1.4) re-
sults the following identity for the joint probability Ps(x1,t1;z2,t2) (Bayes’
rule)

Py(z1,t1;22,t2) = P(x2,t2 | 21,t1) Pi(z1,t1). (1.5)

A process z(t) is called Markovian if for every set of successive times ¢; <
ty < .. < tp, the following condition holds

Pn("l:lw tl ). -7In3t‘n) = Pl(xlvtl)Pn—l(I‘Zsth- 3 7Inatn | ‘Tlatl)
= Pi(z1,t1) P(Tn,tn | Tn-1,tn-1)...P(z2,t2 | 21,%1),
(1.6)

From this definition, it follows that a Markov process is completely de-
termined if we know Pj(xq,t;) and P(z2,ty | x1,t1). It is easy to find
a relevant condition to be fulfilled for Markov processes: specifying the
previous equation for the case n = 3 and integrating over z, we obtain

/ dxy P3( @y ,ty, @2, t2,x3,t3) = Pa(z1,t1,23,t3)
= Py(z1,t1) P(z3,t3 | 1,t1)
= / dzo Pi(z1,t1) P(x3,t3 | z2,t2) P(xa,ts | 21,t1).
(1.7)
For t, < ty < t3 we find the identity
P(z3,t3 | z1,t1) = / dzo P(x3,t3 | z2,t2) P(x2,t2 | z1,t1), (1.8)

which is the Chapman—Kolmogorov Equation for Markov processes. Every
pair of non-negative functions P;(z1,t;) and P(z2,t2 | z1,t1), adequately
normalized and satisfying not only (1.8) but also

Pl(.'L'Q,tz) = / dzy Pl(.'l:l,tl) P(:L‘Q,tg |.’E1,t1), (19)

defines a Markov process. Some typical (useful) examples of Markov pro-
cesses are: the Wiener—Levy, the Ornstein—Uhlenbeck and the Poisson pro-
cesses (van Kampen (2004); Gardiner (2009)).
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Before introducing the master equation, let us briefly discuss about
changing variables. Assume we have the following relation between stochas-
tic variables y and z

y= f(z). (1.10)

A familiar example could be the use of a logarithmic scale y = logz. In
general, the ranges of both variables will differ. The probability that y has
a value between y and y + Ay is given by

P(y)Ay = dx P(z), (1.11)

/y<f(1)<y+Ay

where the integral extends over all intervals of the range of z where the
inequality is fulfilled. We can write equivalently

P(y) = / dz 8(f(z) — Y|P (z). (1.12)

If we have a one-to-one relation among the variables (the dimensions of
and y are the same) it is possible to invert (1.10) obtaining

P(y) = JP(x), (1.13)

with J the absolute value of the Jacobian’s determinant.

1.2 Master Equation

The Chapman-Kolmogorov equation (which is only a property of the solu-
tions for Markov processes) can be recast into a useful form. Going back
to (1.8), we take t3 = to + 0t and consider the limit 6 — 0. It is clear that
we have P(z3,t3 | x2,t2) = d(23 — z2), and it is intuitive to assume that,
if t3 — to ~ 6t (very small), the probability that a transition happens must
be proportional to dt. Accordingly we adopt

P(.’E3,t2 + ot | :L'Q,tz) = 5(1133 — 1‘2) [1 — A(:I,‘g) 5t]
+ 0t W(z3 | 22) + O(6t?), (1.14)

where W (z3 | x2) is the transition probability per unit time from x5 to x3
(which in general could also be a function of ¢5). The probability normal-
ization tells us that

A(zy) = / W (z3 | z2) dzs.
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Substitution of the form for P(x3,t2 + 6t | x2,t2) into (1.8) gives
P ( x3,to+ 6t | :cl,tl):/ P(z3,ty+ 0t | z2,t2) P(x2,t2 | x1,t1) dro
=[1 — A(z3) 6t] P(z3,t2 | xl,t1)+5t/W(:r,3 | 22)P(xa,tsy | 21,11 T2
= P(z3,t2 | 21,t1) — 6t/W(:1:2 | z3) P(x3,ta | 21,t1) dxa

+ (St/W(iEg I .1)2) P((L‘z,tz |.'L‘1,t1) dzs. (115)

After rearranging and taking the limit 6t — 0 we get

P(z3,ty + 0t|z1, 1) — P(zs, ta|lz1, 1) 0
ot T ot

P(z,t|zo,to), (1.16)
finally yielding

(2, o, to) = / (W (alz)P(a’ a0, o) — W (a|a) Pz, tzo, o) )

(1.17)

0
EP

which corresponds to the Master Equation (van Kampen (2004); Gardiner
(2009); Wio (1994); Lindenberg and Wio (2003); Wio, Deza and Lépez
(2012)).

The master equation is a differential form of the Chapman—Kolmogorov
equation. It is an equation for the transition probability P(z,t | o, to),
and more adequate for mathematical manipulations than the Chapman-
Kolmogorov equation, and it has a direct physical interpretation as a bal-
ance equation. At the same time, W (z | 2’)dt is the transition probability
during a very short time (6t). It could be evaluated by approximate meth-
ods, for instance by time dependent perturbation theory (i.e. : the Fermi
golden rule), (van Kampen (2004); Gardiner (2009); Wio (1994)).

1.3 Langevin Equation

Brownian motion is the oldest and best known physical example of a Markov
process. This phenomenon corresponds to the motion of a heavy test parti-
cle, immersed in a fluid composed of light particles in random motion. Due
to the (random) collisions of the light particles against the test particle,
the velocity of the latter varies in a (wide) sequence of small, uncorrelated
jumps. However, similar ideas can (and have) been applied to a large va-
riety of systems (van Kampen (2004); Gardiner (2009); Brink (1985); Wio
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(1994); Lindenberg and Wio (2003); Wio, Deza and Lépez (2012)). To
simplify the presentation we restrict the description to a one dimensional
system.

We will give a simple quantitative picture of Brownian motion. We start
by writing Newton’s equation as

mo = F(t) + f(t), (1.18)

where m is the mass of the Brownian particle, v its velocity, F'(t) the force
due to some external field (i.e. gravitational, electrical for charged particles,
etc), and f(t) is the force produced by the collisions of fluid particles against
the test particle. Due to the rapid fluctuations in v, we have two effects.
On one hand a systematic one, i.e., a kind of friction that tends to slow
down the particle, while on the other hand, a random contribution from
the random hits of the fluid particle. If the mass of the test particle is
much larger than the mass of the fluid particles (implying that the fluid
relazes faster than the test particle, allowing us to assume that it is always
in equilibrium), we can write

%f(t) = — yv + £@1). (1.19)

In the r.h.s., v is the friction coefficient, and the minus sign in the first
term indicates that this contribution should oppose the motion (as a well
behaved friction term). The second term corresponds to the stochastic or
random contribution, since we have separated the systematic contribution
in the first term, and this random contribution averages to zero : (£(¢)) = 0
(where the average is over an ensemble of noninteracting Brownian parti-
cles). In order to define the so called Langevin force (or white noise) it is
required that

(E@EE)) = D o(t—t). (1.20)

We will not consider higher order moments, but it is clear that to fully
characterize the fluctuating force, we need the whole hierarchy of moments
(van Kampen (2004); Gardiner (2009)).

With the above indicated arguments, and without an external field,
(1.18) adopts the form

V= — yu + &), (1.21)

which is known as the Langevin equation. This is the simplest example of a
SDE (that is, a differential equation whose coefficients are random functions
with known stochastic properties). Hence v(t) is a stochastic process, with



