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Inorganic Materials
Series Preface

Back in 1992, two of us (DWB and DO’H) edited the first edition of
Inorganic Materials in response to the growing emphasis on and interest
in materials chemistry. The second edition, which contained updated
chapters, appeared in 1996 and was reprinted in paperback. The aim
had always been to provide chapters that while not necessarily compre-
hensive, nonetheless gave a first-rate and well-referenced introduction
to the subject for the first-time reader. As such, the target audience was
from first-year postgraduate students upwards. In these two editions, we
believe our authors achieved this admirably.

In the intervening years, materials chemistry has grown hugely and it
now finds itself central to many of the major challenges that face global
society. We felt, therefore, that there was a need for more extensive
coverage of the area, and so Richard Walton joined the team and, with
Wiley, we set about working on a new and larger project.

The Inorganic Materials Series is the result, and our aim is to provide
chapters with a similar pedagogical flavour to the first and second
editions, but now with much wider subject coverage. As such, the
work will be contained in several volumes. Many of the early volumes
concentrate on materials derived from continuous inorganic solids. Later
volumes, however, will emphasise methods of characterisation as well
as molecular and soft-matter systems, as we aim for a much more
comprehensive coverage of the area than was possible with Inorganic
Materials.

We are delighted with the calibre of authors who have agreed to write
for us and we thank them all for their efforts and cooperation. We
believe they have done a splendid job and that their work will make
these volumes a valuable reference and teaching resource.

DWB, York
DO’H, Oxford
RIW, Warwick

June 2013



Preface

Inorganic materials show a diverse range of important properties that
are desirable for many contemporary, real-world applications. Good
examples include recyclable battery cathode materials for energy storage
and transport, porous solids for capture and storage of gases and
molecular complexes that can be used in electronic devices. Some of these
families of materials, and many others, were reviewed in earlier volumes
of the Inorganic Materials Series. When considering the property-driven
research in this large field, it is immediately apparent that methods
for structural characterisation must be applied routinely in order to
understand the function of materials and thus optimise their behaviour
for real applications. Thus, ‘structure—property relationships’ are an
important part of research in this area. To determine structure effectively,
advances in methodology are important: the aim is often rapidly to
examine increasingly complex materials in order to gain knowledge of
structure over length scales ranging from local atomic order, through
crystalline, long-range order to the meso- and macroscopic.

No single technique can examine all levels of structural order simul-
taneously, and the chapters presented in this volume deal with recent
advances in important techniques that allow investigation of the struc-
tures of inorganic materials on the local atomic scale. Such short-range
order is concerned with local atomic structure — the arrangement of
atoms in space about a central probe atom — and deals with bond dis-
tances, coordination geometry and the local connectivity of the simple
building units of a complex structure. It is often by studying this short-
est of structural length scales that information about the underlying
behaviour of a material can be deduced. The techniques employed are
usually spectroscopic in origin, involving observation of the effect of
interaction of an appropriate energy source with the substance being
studied, which supplies information about the probe atoms’ environ-
ments. It should be noted that these methods have no requirement for
any long-range order (translational symmetry) and so can be applied
equally to poorly crystalline, glassy, amorphous or heterogeneous sys-
tems, as well as to crystalline substances. Another consideration of any
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characterisation study is the need to examine materials under real oper-
ating conditions in order to understand properly their function; here,
spectroscopic, short-range probes of structure often provide the key.

Some of the techniques discussed in this volume may be familiar to
the reader (such as NMR, EPR and XPS), but with recent advances
broadening their applicability and making them available more rou-
tinely, it is timely to provide up-to-date overviews of their uses. Also
included are techniques that require large-scale facilities, such as X-ray
absorption spectroscopy (XAS) and inelastic neutron scattering (INS).
With the investment by many countries in major facilities for X-ray and
neutron science, such methods provide an important, and increasingly
accessible, addition to the toolbox of techniques available to the scientist
studying the structures of materials. We approached an international set
of expert authors to write the chapters in this volume with the brief to
provide an introduction to the principles of their technique, to describe
recent developments in the field and then to select examples from the
literature to illustrate the method under discussion. We believe they have
done an excellent job in all respects and hope that the chapters provide
a valuable set of references for those who wish to learn the principles of
some important methods in the study of inorganic materials.

DWB, York
DO’H, Oxford
RIW, Warwick

June 2013
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1

Solid-State Nuclear Magnetic
Resonance Spectroscopy

Sharon E. Ashbrook, Daniel M. Dawson and John M. Griffin

School of Chemistry, University of St Andrews, St Andrews, UK

1.1 OVERVIEW

Although  solution-state nuclear magnetic resonance (NMR)
spectroscopy is one of the most widely applied analytical tools in
chemistry, providing a sensitive probe of local structure for systems
ranging from small molecules to large proteins, it is only relatively
recently that solid-state NMR has been able to provide information of a
similar quality. The anisotropic (i.e. orientation-dependent) interactions
affecting NMR spectra, which ultimately provide valuable information
about structure, symmetry and bonding, are averaged in solution by the
rapid tumbling motion of the molecules, resulting in simplified spectra
from which information can be more easily obtained. In contrast, NMR
spectra of solids remain broadened by these interactions, hindering the
extraction of structural information. This broadening poses significant
challenges both in the acquisition of high-resolution NMR spectra
for solids and in their interpretation and analysis. However, in recent
years considerable developments in hardware (e.g. increasing magnetic
field strengths) and in software (e.g. improvements in computational
simulations and analysis packages) have enabled solid-state NMR to

Local Structural Characterisation, First Edition. Edited by Duncan W. Bruce,
Dermot O’Hare and Richard I. Walton.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



2 SOLID-STATE NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

develop to the point where it can play a central role in the atomic-level
understanding of materials as diverse as zeolites, glasses, polymers,
energy materials, pharmaceuticals and proteins.

The ability of NMR spectroscopy to probe the local atomic-scale
environment, without any requirement for long- or short-range order,
enables it to be used alongside more conventional diffraction-based
approaches for the study of solids. The sensitivity of NMR to small
changes in the local environment (and its element specificity) makes
it an ideal approach for studying disorder in solids, be it positional
or compositional, resulting in numerous applications to the study of
glasses, gels and ceramics. NMR is also an excellent probe of dynamics,
sensitive to motion over a wide range of timescales, depending upon
the exact experiment used. However, despite this wealth of information,
the interpretation of solid-state NMR spectra and the extraction of
relevant structural detail remain a challenge. In recent years there has
been growing interest in the use of computational methods alongside
experimental measurement. While there has been a long tradition in
quantum chemistry of the calculation of NMR parameters from first
principles, much of the development has been focused on molecules
(either in vacuum or in solution), rather than on the extended and
periodic structures found in the solid state. Recent methods utilising
periodic approaches to recreate the three-dimensional (3D) structure
from a high-symmetry small-volume unit have found great favour with
experimentalists, and are currently being applied to a wide range of
different systems, helping to interpret complex NMR spectra, improve
structural models and provide new insight into disorder and/or dynamics.

At first sight, the vast array of NMR experiments in the literature
can seem daunting to the non-specialist; however they can be easily
categorised by their overall aim. Many experiments are designed to
improve resolution and/or sensitivity, typically through more efficient
removal of anisotropic broadening —an enduring theme in solid-state
NMR spectroscopy. Experiments have also been developed to measure
the magnitudes of individual interactions, providing information on local
geometry or symmetry, for example. Further experiments are concerned
with the transfer of magnetisation between different nuclei, probing
their through-bond or through-space connectivity. In many cases, the
exact experimental detail is not of vital importance; it is more useful to
understand the type of information available from a particular NMR
spectrum and how it can be extracted. In this chapter, we will give an
overview of solid-state NMR spectroscopy, focusing in particular upon
its application to inorganic solids. We briefly introduce the theoretical
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basis of the technique and the interactions that affect NMR spectra (and
ultimately provide information). We describe the basic and routinely
used experimental techniques, and the information that is available
from solid-state NMR spectra. We then review the nuclear species most
commonly studied and provide a range of examples of the application
of NMR spectroscopy for a wide variety of materials, demonstrating the
versatility and promise of the technique.

1.2 THEORETICAL BACKGROUND

A brief description of the theoretical basis of NMR spectroscopy is
provided here. For a detailed description, see references [1, 2].

1.2.1 Fundamentals of NMR

Atomic nuclei possess an intrinsic spin angular momentum, I, described
by the nuclear spin quantum number, I, which may take any positive
integer or half-integer value. The projection of I onto a specified axis,
arbitrarily the z-axis, is quantised in units of mzh, where m is the
magnetic quantum number, and takes values between +I and —I in
integer steps, leading to 21 + 1 degenerate spin states. Nuclei with I > 0
possess a magnetic dipole moment, p, related to I by the gyromagnetic
ratio, ¥, which is characteristic of a given nuclide. Therefore, p is
quantised along the (arbitrary) z-axis in units of ym;h. When an external
magnetic field, By, is present, the axis of quantisation is defined and
the degeneracy of the nuclear spin states is removed. The field-induced
splitting of nuclear energy levels is known as the Zeeman interaction,
with the Zeeman energy of a state, 1, given by:

Em| = —ymyh B (1.1)

as shown in Figure 1.1. Only transitions with Am; = £1 are observable
in NMR spectroscopy and, therefore, all observable transitions are
degenerate, with a frequency:

wy = —y By (1.2)

where wj is the Larmor frequency, with units of rads™! (or vy = w,/27,
in Hz). In a macroscopic sample at thermal equilibrium, nuclei occupy
energy levels according to the Boltzmann distribution. The equilibrium



