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Preface

Welcome to Volume 4 of the ‘Chemical Modelling” SPR. Naturally, I
want to start by thanking my team of authors for the hard work they
have put into making this the best and most comprehensive volume so
far.

It seems a long time since I wrote the following in my Preface to
Volume 1 (1999) . ..

*Starting a new SPR is never easy, and there was the problem of where
the contributors should start their accounts; since time began? five years
ago? An SPR should be the first port of call for an up-to-the-minute
account of trends in a specialist subject rather than a dull collection of
references. My solution was to ask contributors to include enough histor-
ical perspective to bring a non-specialist up to speed, but to include all
pertinent references through May 1999. Volume 2 will cover the literature
from June 1999 to May 2001 and so on. In subsequent Volumes, I shall ask
those Contributors dealing with the topics from Volume 1 to start from
there. New topics will be given the same generous historical perspective
opportunity as Volume 1 but will have to cover the literature to 2001 + n
where n = 0, 2, 4, . ... This process will continue until equilibrium is
reached.

I think we have now reached equilibrium; some topics have reached
maturity and so don’t need cover every Volume, whilst a casual monthly
glance at the content pages of JACS, JCP, JPC, CPL, THEOCHEM,
Faraday Transactions (to name my favorites, not given in order of
merit) reveals growth areas.

As an example of a ‘mature’ topic, consider Density Functional
Theory (DFT). DFT is far from new and can be traced back to the
work of John Slater and other solid state physicists in the 1950’s, but it
was ignored by chemists despite the famous papers by Hohenberg/
Kohn (1964) and Kohn/ Sham (KS) (1965). The HF-LCAO model
dominated molecular structure theory from the 1960’s until the early
1990s and 1 guess the turning point was the release of the rather
primitive KS-LCAO version of GAUSSIAN. DFT never looked back
after that point, and it quickly became the standard for molecular
structure calculations. So this Volume of the SPR doesn’t have a self
contained Chapter on DFT because the field is mature.

As an example of a ‘perennial’ topic, consider the theory of liquids.
Almost every undergraduate physical chemistry text tells us that gases
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and solids are easy to understand because in the first case we have
random motion, whilst in the second rigid structures. The gist of this
argument is that liquids are really tricky, as indeed they are. The first
computer simulation of a liquid was carried out in 1953 at the Los
Alamos National Laboratories. The MANIAC mainframe was much
less powerful than the PC I am using to write this Preface but the early
work by Metropolis et. al. laid the foundations for modern liquid
modeling. David Heyes (Volume 2) and Karl Travis (Volume 3) told
you how things were in a few years ago, and the story is continued by
Billy Todd and Debra Bernhardt in Volume 4.
My final sentence for Volume 1 was

‘I am always willing to listen to convincing ideas for new topics’

as indeed I am. My colleague J Jerry Spivey is Editor for the Catalysis
SPR; he took me at my word and as a result it is a pleasure to welcome
our first contribution from David S Sholl on Heterogeneous Catalysis.

I haven’t space to give glowing descriptions of the remaining contri-
butions from each colleague. We hope you will derive benefit and
perhaps even pleasure from our efforts.

On a rare personal note, I should tell you that UMIST and the
Victoria University of Manchester recently decided to merge to become
the UK’s largest University; I'm still sitting at the same desk in the same
office but my employer is now ‘The University of Manchester’ and my e-
mail has changed to alan.hinchliffe@manchester.ac.uk

Alan Hinchliffe
Manchester 2006
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Computer-Aided Drug Design 2003-2005

BY BERNARD COUPEZ, HENRIK MOBITZ AND RICHARD A. LEWIS
Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland

1 Introduction

The themes for this review again have been driven strongly by the need of the
Pharmaceutical industry to make the discovery process quicker and more
reliable. Virtual screening in all its forms is at the heart of most research, from
bioavailability filters through to rigorous estimations of the free energy of
binding. Two areas of relative heat have been docking/scoring, and ADME/
Tox. On the other hand, 3D-QSAR and pharmacophores have become quiet.
Part of the reason for this may arise from the successes in high-throughput
crystallography, delivering more targets and complexes, the relative failure of
HTS, and the increase in the amount of high quality data coming from late-
phase research/early-phase development concerning the fate of clinical candi-
dates. These trends look set to continue in the future, and the next two years
should yield many new breakthroughs.

2 ADME/Tox and Druggability

There has been a fresh impetus to the modelling of ADME, Toxicity and
druggability phenomena, partly driven by a desire to understand why such
complex phenomena can, apparently, be described so simply, and partly to sce
if better models can be built, to improve the attrition rate in medicinal
chemistry still further.

2.1 Druggability and Bioavailability. — In the continuing debate over what
physicochemical properties are required for bioavailability, Vieth ¢z al.' have
surveyed 1729 marketed drugs with respect to their route of administration,
h-bonding capability, lipophilicity and flexibility. One conclusion they draw is
that these properties have not varied substantially over time, implying that oral
bioavailability is independent of target or molecular complexity. Compounds
with lower molecular weight, balanced lipophilicity and less flexibility tend to
be favoured. Leeson and Davis® claim that molecular weight, flexibility, the
number of O and N atoms and hydrogen-bond acceptors have risen, by up to

Chemical Modelling: Applications and Theory, Volume 4
© The Royal Society of Chemistry, 2006



Chem. Modell., 2006, 4, 1-22

9

29%. This may be partly due to the choice of 1983 as the reference year, or the
advent of more complex targets with greater selectivity needs (¢.g. kinases). In
the same vein, a study® re-examined the correlation of flexibility and polar
surface area (PSA) with bioavailability proposed by Veber ¢r al.* One conclu-
sion is that there are significant differences in the ways of defining flexibility
and PSA, and the correlations depend markedly on the method used (this is not
surprising, as neither quantity is precisely definable). A second conclusion was
that the limits defined (Number of rotatable bond < 10, PSA < 140 A? %) excluded
a significant number of compounds with acceptable rat bioavailability. In
the authors™ words, “This observation underscores the potential danger of
attempting to generalise a very complicated endpoint and of using that gener-
alisation in a prospective selection application™. Despite this, another bioavail-
ability score® has been devised, to predict the probability that a compound
has > 10% bioavailability in the rat. Compounds are grouped by ionisation
class (anions, cations, neutral). It was found that the standard rule-of-5 does
well for cations and neutrals (88% of the compounds predicted to have low
bioavailability are observed as such). Anionic compounds were better described
by PSA limits. Some simple rules are given to compute the bioavailability
score. In Abbott laboratories, this score is now routinely computed for all
compounds and is used for hit-list triaging. It will be interesting to see if the
results can be repeated on other data sets; the paper has certainly sparked much
interest in the modelling community. Wegner® provides support for the idea
that human intestinal absorption correlates with PSA, by generating a classi-
fication model. The justification is that the error in the experimental data is
25%, and 80% of the observations occur in the top and bottom quartiles, that
is, the data is more binary than evenly spread. In addition to PSA, other
descriptors that reflect the electronic character of atoms and their environment
also came to the fore.

2.2 Metabolism, Inhibitors and Substrates. — The field of cytochrome model-
ling is becoming more mature as we begin to understand the limitations of the
experimental data and the subtleties of the mechanisms (the whole field of
cytochrome P450 modelling, including homology, pharmacophore and 3D-
QSAR models has been reviewed in detail recently’). Empirical models are still
preferred, especially for rapid evaluation of large libraries. In one case, use of a
jury system improved prediction accuracy to over 90%." Chohan er al.® have
developed 4 models for Cytochrome P450 (Cyp) 1A2 inhibition, and identified
the expected descriptors as being important to the QSAR (lipophilicity,
aromaticity, HOMO/LUMO energies). Perhaps a more interesting result in
this paper was the use of the k index to assess predictive powers of the models
using test data.

__observed agreement-chance agreement

total observed-chance agreement

This index should prove useful for data sets that are diverse and noisy. The
validity of QSAR model predictions has also been studied by Guha and Jurs.'®
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The protocol is quite straightforward. The initial QSAR models were built, and
the residuals of the compounds in the training set were used to classify the
trains set predictions into good and bad. The threshold for the classification is
arbitrary. Test compounds were predicted, and the predictions were grouped by
substructural similarity to the nearest neighbour in the training set. It was seen
that test compounds that had neighbours with low/good residuals were them-
selves well-predicted, with the reverse being the case for neighbours with high
residuals. The success rate for classifying the strength of the prediction was
73% to 94%. The Merck group'' performed a retrospective study of in-house
data sets, and concluded that the distance to the nearest neighbour, and the
number of nearest neighbours (local density) were the two most useful meas-
ures for predicting prediction quality. They also concluded that distance does
not have to be measured in the same descriptor space as was used to build the
QSAR model. Topological descriptors combined with a Dice coefficient
worked equally well.

A number of groups have been active in the prediction of the most likely sites
of metabolism of molecules that are substrates for cytochromes. Singh et al.'?
developed a semi-quantitative method based on the energy barrier to
the creation of hydrogen radicals as calculated by AMI1. Using a set of 50
substrates for Cyp 3A4, they were able to show that only hydrogens with a
solvent-accessible surface area over 8 A are susceptible to attack. The
expensive quantum mechanic calculations could be approximated by local
neighbourhood descriptors which could be well correlated to the energies (R?*=
0.98), offering a fast and practical method for screening large libraries. An
extension of this concept is embodied in the MetaSite program,'* which uses
propensity to react, accessibility and GRID molecular interaction fields as
descriptors. The methodology is more general, and can be applied to any
cytochrome structure: in validation experiments, an accuracy of 80% is
claimed. It is also important to be able to predict which compounds will be
inhibitors as well as substrates, to avoid drug-drug interactions. A classifier
based on a support vector machine (SVM)'* has been created that correctly
predicts compounds into high, medium and low affinity at 70% accuracy, even
with simple 2D descriptors. The improved accuracy was obtained through a
systematic variation and optimisation of the SVM parameters.

Considering the success of surprisingly simple, semiempirical methods in
ADME modelling, it is interesting to see whether more advanced methods
could bring further improvements. A recent paper of Beck'> provides a link to
the rich literature of DFT studies of hemes and cytochromes. The author uses
Fukui functions to gauge the site of highest nucleophilicity of a number of
known drugs. The predictions give mixed results and demonstrate that the
implicit assumption of Fukui functions, i.e. an isotropic electrophilic attack, is
flawed, not to mention that their MO-like shape does not allow a ranking of
single atoms. In conclusion, the study suggests that it is more important to have
an accurate description of the cytochrome-ligand complex than to invest in a
high-level description of the chemical reactivity. De Visser et al.'® have used
DFT on 10 C-H barriers with reference to bacterial cytochromes, and claim an



