Editor A Hinchliffe

Chemical Modelling: Applications and Theory

Volume 4

Chemical Modelling

Applications and Theory

Volume 4

A Review of Recent Literature Published between June 2003 and May 2005

Editor

A. Hinchliffe, School of Chemistry, The University of Manchester, Manchester, UK

Authors

B. Coupez, Novartis Institutes for Biomedical Research, Basel, Switzerland

R.A. Lewis, Novartis Institutes for Biomedical Research, Basel, Switzerland

H. Möbitz, Novartis Institutes for Biomedical Research, Basel, Switzerland

A.J. Mulholland, University of Bristol, Bristol, UK

A. Miličević, The Institute of Medical Research and Occupational Health, Zagreb, Croatia

D. Pugh, University of Strathclyde, Glasgow

D.J. Searles, Griffith University, Brisbane, Australia

D.S. Sholl, Carnegie Mellon University, Pittsburgh, PA, USA

T.E. Simos, University of Peloponnese, Athens, Greece

M. Springborg, University of Saarland, Saarbrücken, Germany

B.D. Todd, Swinburne University of Technology, Victoria, Australia

N. Trinajstić, Rudjer Bošković Institute, Zagreb, Croatia

S. Wilson, Rutherford Appleton Laboratory, Chilton, Oxfordshire

RSCPublishing

If you buy this title on standing order, you will be given FREE access to the chapters online. Please contact sales@rsc.org with proof of purchase to arrange access to be set up.

Thank you.

ISBN-10: 085404-243-1 ISBN-13: 978-0-85404-243-2 ISSN 0584-8555

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2006

All rights reserved

Apart from any fair dealing for the purpose of research or private study for non-commercial purposes, or criticism or review as permitted under the terms of the UK Copyright, Designs and Patents Act, 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Typeset by Macmillan India Ltd, Bangalore, India Printed and bound by Henry Ling Ltd, Dorchester, Dorset, UK

Chemical Modelling Applications and Theory

Volume 4

Preface

Welcome to Volume 4 of the 'Chemical Modelling' SPR. Naturally, I want to start by thanking my team of authors for the hard work they have put into making this the best and most comprehensive volume so far.

It seems a long time since I wrote the following in my Preface to Volume 1 (1999) . . .

'Starting a new SPR is never easy, and there was the problem of where the contributors should start their accounts; since time began? five years ago? An SPR should be the first port of call for an up-to-the-minute account of trends in a specialist subject rather than a dull collection of references. My solution was to ask contributors to include enough historical perspective to bring a non-specialist up to speed, but to include all pertinent references through May 1999. Volume 2 will cover the literature from June 1999 to May 2001 and so on. In subsequent Volumes, I shall ask those Contributors dealing with the topics from Volume 1 to start from there. New topics will be given the same generous historical perspective opportunity as Volume 1 but will have to cover the literature to 2001 + n where $n = 0, 2, 4, \ldots$ This process will continue until equilibrium is reached.'

I think we have now reached equilibrium; some topics have reached maturity and so don't need cover every Volume, whilst a casual monthly glance at the content pages of JACS, JCP, JPC, CPL, THEOCHEM, Faraday Transactions (to name my favorites, not given in order of merit) reveals growth areas.

As an example of a 'mature' topic, consider Density Functional Theory (DFT). DFT is far from new and can be traced back to the work of John Slater and other solid state physicists in the 1950's, but it was ignored by chemists despite the famous papers by Hohenberg/Kohn (1964) and Kohn/Sham (KS) (1965). The HF-LCAO model dominated molecular structure theory from the 1960's until the early 1990s and I guess the turning point was the release of the rather primitive KS-LCAO version of GAUSSIAN. DFT never looked back after that point, and it quickly became the standard for molecular structure calculations. So this Volume of the SPR doesn't have a self contained Chapter on DFT because the field is mature.

As an example of a 'perennial' topic, consider the theory of liquids. Almost every undergraduate physical chemistry text tells us that gases vi Preface

and solids are easy to understand because in the first case we have random motion, whilst in the second rigid structures. The gist of this argument is that liquids are really tricky, as indeed they are. The first computer simulation of a liquid was carried out in 1953 at the Los Alamos National Laboratories. The MANIAC mainframe was much less powerful than the PC I am using to write this Preface but the early work by Metropolis et. al. laid the foundations for modern liquid modeling. David Heyes (Volume 2) and Karl Travis (Volume 3) told you how things were in a few years ago, and the story is continued by Billy Todd and Debra Bernhardt in Volume 4.

My final sentence for Volume 1 was

'I am always willing to listen to convincing ideas for new topics'

as indeed I am. My colleague J Jerry Spivey is Editor for the Catalysis SPR; he took me at my word and as a result it is a pleasure to welcome our first contribution from David S Sholl on Heterogeneous Catalysis.

I haven't space to give glowing descriptions of the remaining contributions from each colleague. We hope you will derive benefit and perhaps even pleasure from our efforts.

On a rare personal note, I should tell you that UMIST and the Victoria University of Manchester recently decided to merge to become the UK's largest University; I'm still sitting at the same desk in the same office but my employer is now 'The University of Manchester' and my email has changed to alan.hinchliffe@manchester.ac.uk

Alan Hinchliffe Manchester 2006

Contents

Cover

The icosahedral 'golden fullerene' WAu₁₂ reproduced by permission of Pekka Pyykkö, Chemistry Department, University of Helsinki, Finland.

Computer-Aided Drug Design 2003–2005		1	
By Berr	nard Coupez, Henrik Möbitz and Richard A. Lewis		
1	Introduction	1	
2	2 ADME/Tox and Druggability		
	2.1 Druggability and Bioavailability	1	
	2.2 Metabolism, Inhibitors and Substrates	2	
	2.3 Toxicity	4	
3	Docking and Scoring	4	
	3.1 Ligand Database Preparation	4	
	3.2 Target Preparation	5	
	3.3 Water Molecules	6	
	3.4 Comparison of Docking Methods	6	
	3.5 Scoring	7	
	3.6 New Methods	8	
	3.7 Application of Virtual Screening	9	
4	De Novo, Inverse QSAR and Automated Iterative		
	Design	10	

	5	3D-QSAR	11
	6	Sales	11
	7	Library Design	12
	8	Cheminformatics and Data Mining	13
		8.1 Scaffold Hopping	13
		8.2 Descriptors and Atom Typing	14
		8.3 Tools	15
	9	Structure-Based Drug Design	15
		9.1 Analysis of Active Sites and Target Tracability	15
		9.2 Kinase Modelling	16
		9.3 GPCR Modelling	16
	10	Conclusions	18
	Re	eferences	18
		lling Biological Systems	23
By	Aa	lrian J. Mulholland	
	1	Introduction	23
	2	Empirical Forcefields for Biomolecular Simulation: Molecular	
		Mechanics (MM) Methods	24
	3	Combined Quantum Mechanics/Molecular Mechanics	
		(QM/MM) Methods	29
		3.1 Interactions between the QM and MM Regions	31
		3.2 Basic Theory of QM/MM Methods	34
		3.3 Treatment of Long-Range Electrostatic Interactions in	
		QM/MM Simulations	35
		3.4 QM/MM Partitioning Methods and Schemes	37
	4	Some Comments on Experimental Approaches to the	
		Determination of Biomolecular Structure	41
	5	Computational Enzymology	43
		5.1 Goals in Modelling Enzyme Reactions	43
		5.2 Methods for Modelling Enzyme-Catalysed Reaction	
		Mechanisms	45
		5.3 Quantum Chemical Approaches to Modelling	
		Enzyme Reactions: Cluster (or Supermolecule)	
		Approaches, and Linear-Scaling QM Methods	45
		5.4 Empirical Valence Bond Methods	47
		5.5 Examples of Recent Modelling Studies of Enzymic	
			48
	6		
	Reactions 4 6 Ab initio (Car-Parrinello) Molecular Dynamics		59

Chem.	Modell., 2006, 4 , vii–xiv	ix
7	Conclusions	60
Ac	knowledgements	60
	ferences	61
	zabilities, Hyperpolarizabilities and Analogous	
	etic Properties vid Pugh	69
1	Introduction	69
2	Electric Field Related Effects	70
-	2.1 Atoms	70
	2.2 Diatomic Molecules: Non-Relativistic	73
	2.3 Diatomic Molecules: Relativistic	73
	2.4 Atom-Atom Interactions	74
	2.5 Inert Gas Compounds	74
	2.6 Water	76
	2.7 Small Polyatomic Molecules	87
	2.8 Medium Sized Organic Molecules	88
	2.9 Organo-Metallic Complexes	93
	2.10 Open Shells and Ionic Structures	93
	2.11 Clusters, Intermolecular and Solvent Effects, Full Nanotubes	erenes,
	2.12 One and Two Photon Absorption, Luminescence	
	2.13 Theoretical Developments	95
	2.14 Oligomers and Polymers	96
	2.15 Molecules in Crystals	96
3	Magnetic Effects	97
	3.1 Inert Gases, Atoms, Diatomics	97
	3.2 Molecular Magnetisabilities, Nuclear Shielding and	d
	Aromaticity, Gauge Invariance	98
R	eferences	99
	ations of Density Functional Theory to Heterogeneous Cata	alysis 108
1	Introduction	108
2	Success Stories	111
_	2.1 Success Story Number One: CO Oxidation over RuC	

		2.2	Success Story Number Two: Ammonia Synthesis on Ru	
			Catalysts	114
		2.3	Success Story Number Three: Ethylene	
			Epoxidation	122
	3		as of Recent Activity	129
		3.1	Ab initio Thermodynamics	130
		3.2	Catalytic Activity of Supported Gold Nanoclusters	134
		3.3	Control of the Contro	142
	4		as Poised for Future Progress	146
			Catalysis In Reversible Hydrogen Storage	146
			Electrocatalysis	147
	-		Zeolite Catalysis	148
	5		clusion and Outlook	152
			vledgements	152
	Re	eferen	ces	153
Nı	ıme	rical I	Methods in Chemistry	161
B_1	· T.	E. Sii	nos	
	1	Intro	oduction	161
	2	Part	itioned Trigonometrically-Fitted Multistep Methods	163
		2.1	First Method of the Partitioned Multistep Method	163
		2.2	Second Method of the Partitioned Multistep Method	167
		2.3	Numerical Results	172
	3	Disp	persion and Dissipation Properties for Explicit Runge-Kutta	
		Met	hods	176
		3.1	Basic Theory	176
		3.2	Construction of Runge-Kutta Methods which is Based on	
			Dispersion and Dissipation Properties	177
		3.3	Numerical Results	181
	4	Fou	r-Step P-Stable Methods with Minimal Phase-Lag	185
		4.1	Phase-Lag Analysis of General Symmetric	
			$2k - \text{Step}, k \in N \text{ Methods}$	185
		4.2	Development of the New Method	186
		4.3	Numerical Results	189
	5	Trig	onometrically Fitted Fifth-Order Runge-Kutta Methods for	
			Numerical Solution of the Schrödinger Equation	190
		5.1	Explicit Runge-Kutta Methods for the Schrödinger	
			Equation	190
		5.2	· · · · · · · · · · · · · · · · · · ·	191

		struction of Trigonometrically-Titled Runge-Rutta	
		hods	191
6		P-Stable Trigonometrically-Fitted Methods	194
		elopment of the New Method	194
	6.2 Nun	nerical Results	198
7	Comment	ts on the Recent Bibliography	200
Re	ferences		209
Ap	pendix A	Partitioned Multistep Methods – Maple	
		Program of Construction of the Methods	211
Ap	pendix B	Maple Program for the development of	
		Dispersive-fitted and dissipative-fitted	
		explicit Runge-Kutta method	216
Ap	pendix C	Maple Program for the development of	
		explicit Runge-Kutta method with	
		minimal Dispersion	223
Ap	pendix D	Maple Program for the development of	
		explicit Runge-Kutta method with	
		minimal Dissipation	230
Ap	pendix E	Maple Program for the development	
		of the New Four-Step P-stable method	
		with minimal Phase-Lag	237
Ap	pendix F	Maple Program for the development	
	The sea the street that	of the Trigonometrically Fitted Fifth-Order	
		Runge-Kutta Methods	238
Ap	pendix G	Maple Program for the development of the	
	1	New Four-Step P-stable	
		Trigonometrically-Fitted method	244
		,	
Detern	nination of	Structure in Electronic Structure	
Calcula		Structure in Electronic Structure	249
	chael Sprii	nghorg	247
Dy Mi	chier Sprii	180018	
1	Introduc	tion	249
2		ning the Global Total-Energy Minima for	24)
2	Clusters	ang the Global Total-Energy Willing 101	256
		ndom vs. Selected Structures	256
		elecular-Dynamics and Monte Carlo	230
		nulations	258
		e Car-Parrinello Method	
	2.5 The	Car-i arrificilo ivictilou	260

	2.4	Figanmada Mathada	261
		Eigenmode Methods GDIIS	263
		Lattice Growth	264
		Cluster Growth	265
		Aufbau/Abbau Method	265
		The Basin Hopping Method	266
		Genetic Algorithms	267
		Tabu Search	268
		Combining the Methods	270
3		criptors for Cluster Properties	271
)	3.1	Energetics	271
	3.2	Shape	272
		Atomic Positions	272
		Structural Similarity	273
		Structural Motifs	274
	3.6	Phase Transitions	276
4		mples for Optimizing the Structures of Clusters	278
	4.1	One-Component Lennard-Jones Clusters	278
	4.2	Two-Component Lennard-Jones Clusters	282
	4.3	Morse Clusters	283
	4.4	Sodium Clusters	284
		Other Metal Clusters	288
	4.6	Non-Metal Clusters	297
	4.7	Metal Clusters with More Types of Atoms	299
	4.8	Non-Metal Clusters with More Types of	
		Atoms	304
	4.9	Clusters on Surfaces	307
5		ermining Saddle Points and Reaction Paths	308
	5.1	Interpolation	309
	5.2	Eigenmode Methods	309
	5.3	The Intrinsic Reaction Path	310
		Changing the Fitness Function	310
		Chain-of-States Methods	311
		Nudged Elastic-Band Methods	312
	5.7	String Methods	312
	5.8	Approximating the Total-Energy Surface	314
6	Exar	nples for Saddle-Point and Reaction-Path	
		ulations	314
7	Con	clusions	318
Re	feren	ces	320

	ation of Liquids D. Todd and D.J. Searles	324
i	Introduction	324
2	Classical Simulation Techniques	325
_	2.1 Statistical Mechanical Ensembles and Equilibrium	020
	Techniques	325
	2.2 Nonequilibrium MD Simulations and Hybrid	*
	Atomistic-Continuum Schemes	328
3	Potential Energy Hypersurfaces for Liquid State	
	Simulations	332
	3.1 Quantum Mechanical Interaction Potentials for Weak	
	Interactions	334
	3.2 Three-Body Interactions	336
	3.3 Potential Energy Functions for Confined Fluids	337
4	Quantum Mechanical Considerations	339
	4.1 Born-Oppenheimer, Car-Parrinello and Atom-Centred	
	Density Matrix Propagation Methods	339
	4.2 Hybrid Methods	340
	4.3 Cluster Calculations	341
-	4.4 Dynamical Quantum Effects	341
5	Lyapunov Exponents	343
6	Thermodynamic and Transport Properties	344
	6.1 Thermodynamic Properties 6.2 Free Energies and Entropy Production	344
	6.2 Free Energies and Entropy Production6.3 Transport Properties	347
7	Phase Diagrams and Phase Transitions	350 355
,	7.1 Bulk Fluids	355
	7.2 Phase Transitions in Confined Systems	358
8	Complex Fluids	360
	8.1 Colloids, Dendrimers, Alkanes, Biomolecular	300
	Systems, etc.	361
	8.2 Polymers	367
9	Confined Fluids	376
	9.1 Nanofluidics, Friction, Stick-Slip Boundary	2.0
	Conditions, Transport and Structure	377
	9.2 Confined Complex Fluids	384
	9.3 Simple Models	389
10	Water	391
11	Conclusions	392
Ref	Perences	392

Con	nbi	inatorial Enumeration in Chemistry	405
	1	Introduction	405
	=		405
•	_		405
			421
			436
			442
			450
2	3		457
2.5 Other Enumerations 3 Conclusion Acknowledgment References Many-Body Perturbation Theory and its Application to the Molecular Structure Problem By S. Wilson 1 Introduction			
3 Conclusion Acknowledgment References Many-Body Perturbation Theory and its Application to the Molecular Structure Problem By S. Wilson 1 Introduction 2 Computation and Supercomputation 2.1 The Role of Computation 2.2 Supercomputational Science 2.3 Literate Programming 2.4 A Literate Program for Many-Body Perturbation Theory 3 Increasingly Complex Molecular Systems 3.1 Large Molecular Systems 3.2 Relativistic Formulations 3.3 Multireference Formalisms 3.4 Multicomponent Formulations 4 Diagrammatic Many-Body Perturbation Theory of Molecular Electronic Structure: A Review of Applications 4.1 Incidence of the String "MP2" in Titles and/or Keywords and/or Abstracts 4.2 Comparison with Other Methods 4.3 Synopsis of Applications of Second Order Many-Body		459	
Stru	icti	ure Problem	470
	1	Introduction	470
	-		472
•	_		473
		The state of the s	475
			476
			170
			482
1	3	· J	510
-			511
			511
		3.3 Multireference Formalisms	512
		3.4 Multicomponent Formulations	514
4	4		
		Applications	514
		4.1 Incidence of the String "MP2" in Titles and/or Keywords	
			514
			517
		Perturbation Theory	519
5	5 Summary and Prospects		523
I	Re	ferences	524

Computer-Aided Drug Design 2003-2005

BY BERNARD COUPEZ, HENRIK MÖBITZ AND RICHARD A. LEWIS Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland

1 Introduction

The themes for this review again have been driven strongly by the need of the Pharmaceutical industry to make the discovery process quicker and more reliable. Virtual screening in all its forms is at the heart of most research, from bioavailability filters through to rigorous estimations of the free energy of binding. Two areas of relative heat have been docking/scoring, and ADME/Tox. On the other hand, 3D-QSAR and pharmacophores have become quiet. Part of the reason for this may arise from the successes in high-throughput crystallography, delivering more targets and complexes, the relative failure of HTS, and the increase in the amount of high quality data coming from latephase research/early-phase development concerning the fate of clinical candidates. These trends look set to continue in the future, and the next two years should yield many new breakthroughs.

2 ADME/Tox and Druggability

There has been a fresh impetus to the modelling of ADME, Toxicity and druggability phenomena, partly driven by a desire to understand why such complex phenomena can, apparently, be described so simply, and partly to see if better models can be built, to improve the attrition rate in medicinal chemistry still further.

2.1 Druggability and Bioavailability. – In the continuing debate over what physicochemical properties are required for bioavailability, Vieth *et al.*¹ have surveyed 1729 marketed drugs with respect to their route of administration, h-bonding capability, lipophilicity and flexibility. One conclusion they draw is that these properties have not varied substantially over time, implying that oral bioavailability is independent of target or molecular complexity. Compounds with lower molecular weight, balanced lipophilicity and less flexibility tend to be favoured. Leeson and Davis² claim that molecular weight, flexibility, the number of O and N atoms and hydrogen-bond acceptors have risen, by up to

29%. This may be partly due to the choice of 1983 as the reference year, or the advent of more complex targets with greater selectivity needs (e.g. kinases). In the same vein, a study³ re-examined the correlation of flexibility and polar surface area (PSA) with bioavailability proposed by Veber et al.4 One conclusion is that there are significant differences in the ways of defining flexibility and PSA, and the correlations depend markedly on the method used (this is not surprising, as neither quantity is precisely definable). A second conclusion was that the limits defined (Number of rotatable bond < 10, PSA $< 140 \text{ Å}^2$) excluded a significant number of compounds with acceptable rat bioavailability. In the authors' words, "This observation underscores the potential danger of attempting to generalise a very complicated endpoint and of using that generalisation in a prospective selection application". Despite this, another bioavailability score⁵ has been devised, to predict the probability that a compound has >10\% bioavailability in the rat. Compounds are grouped by ionisation class (anions, cations, neutral). It was found that the standard rule-of-5 does well for cations and neutrals (88% of the compounds predicted to have low bioavailability are observed as such). Anionic compounds were better described by PSA limits. Some simple rules are given to compute the bioavailability score. In Abbott laboratories, this score is now routinely computed for all compounds and is used for hit-list triaging. It will be interesting to see if the results can be repeated on other data sets; the paper has certainly sparked much interest in the modelling community. Wegner⁶ provides support for the idea that human intestinal absorption correlates with PSA, by generating a classification model. The justification is that the error in the experimental data is 25%, and 80% of the observations occur in the top and bottom quartiles, that is, the data is more binary than evenly spread. In addition to PSA, other descriptors that reflect the electronic character of atoms and their environment also came to the fore.

2.2 Metabolism, Inhibitors and Substrates. – The field of cytochrome modelling is becoming more mature as we begin to understand the limitations of the experimental data and the subtleties of the mechanisms (the whole field of cytochrome P450 modelling, including homology, pharmacophore and 3D-QSAR models has been reviewed in detail recently⁷). Empirical models are still preferred, especially for rapid evaluation of large libraries. In one case, use of a jury system improved prediction accuracy to over 90%. Chohan *et al.* have developed 4 models for Cytochrome P450 (Cyp) 1A2 inhibition, and identified the expected descriptors as being important to the QSAR (lipophilicity, aromaticity, HOMO/LUMO energies). Perhaps a more interesting result in this paper was the use of the *k* index to assess predictive powers of the models using test data.

 $k = \frac{\text{observed agreement-chance agreement}}{\text{total observed-chance agreement}}$

This index should prove useful for data sets that are diverse and noisy. The validity of QSAR model predictions has also been studied by Guha and Jurs. ¹⁰

The protocol is quite straightforward. The initial QSAR models were built, and the residuals of the compounds in the training set were used to classify the trains set predictions into good and bad. The threshold for the classification is arbitrary. Test compounds were predicted, and the predictions were grouped by substructural similarity to the nearest neighbour in the training set. It was seen that test compounds that had neighbours with low/good residuals were themselves well-predicted, with the reverse being the case for neighbours with high residuals. The success rate for classifying the strength of the prediction was 73% to 94%. The Merck group 11 performed a retrospective study of in-house data sets, and concluded that the distance to the nearest neighbour, and the number of nearest neighbours (local density) were the two most useful measures for predicting prediction quality. They also concluded that distance does not have to be measured in the same descriptor space as was used to build the QSAR model. Topological descriptors combined with a Dice coefficient worked equally well.

A number of groups have been active in the prediction of the most likely sites of metabolism of molecules that are substrates for cytochromes. Singh et al. 12 developed a semi-quantitative method based on the energy barrier to the creation of hydrogen radicals as calculated by AM1. Using a set of 50 substrates for Cyp 3A4, they were able to show that only hydrogens with a solvent-accessible surface area over 8 Å² are susceptible to attack. The expensive quantum mechanic calculations could be approximated by local neighbourhood descriptors which could be well correlated to the energies (R^2 0.98), offering a fast and practical method for screening large libraries. An extension of this concept is embodied in the MetaSite program, 13 which uses propensity to react, accessibility and GRID molecular interaction fields as descriptors. The methodology is more general, and can be applied to any cytochrome structure: in validation experiments, an accuracy of 80% is claimed. It is also important to be able to predict which compounds will be inhibitors as well as substrates, to avoid drug-drug interactions. A classifier based on a support vector machine (SVM)¹⁴ has been created that correctly predicts compounds into high, medium and low affinity at 70% accuracy, even with simple 2D descriptors. The improved accuracy was obtained through a systematic variation and optimisation of the SVM parameters.

Considering the success of surprisingly simple, semiempirical methods in ADME modelling, it is interesting to see whether more advanced methods could bring further improvements. A recent paper of Beck¹⁵ provides a link to the rich literature of DFT studies of hemes and cytochromes. The author uses Fukui functions to gauge the site of highest nucleophilicity of a number of known drugs. The predictions give mixed results and demonstrate that the implicit assumption of Fukui functions, *i.e.* an isotropic electrophilic attack, is flawed, not to mention that their MO-like shape does not allow a ranking of single atoms. In conclusion, the study suggests that it is more important to have an accurate description of the cytochrome-ligand complex than to invest in a high-level description of the chemical reactivity. De Visser *et al.*¹⁶ have used DFT on 10 C–H barriers with reference to bacterial cytochromes, and claim an