Sbffwa re
auw wystems
Architecture
in Action

Raghvinder S. Sangwan

CRC Press

Taylor & Francis Group
AN AUERBACH BOOK

Software
and Systems
Architecture

in Action

Raghvinder S. Sangwan

©RC Press

Taylor & Francis Group
Boca Raton London Ne

Taylor & Francis Group, an informa business
AN AUERBACH BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20140418

International Standard Book Number-13: 978-1-4398-4916-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Sangwan, Raghvinder S.

Software and systems architecture in action / Raghvinder S. Sangwan.

pages cm. -- (Auerbach series on applied software engineering)

"A CRC title."

Includes bibliographical references and index.

ISBN 978-1-4398-4916-3

1. Computer architecture. 2. Software architecture. 3. Computer systems--Design
and construction. 4. Electronic data processing--Distributed processing. 5. Business
enterprise--Computer networks--Design and construction. L. Title.

QA76.9.A73529 2015
004.2'2--dc23 2014013462

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Software
and Systems
Architecture

in Action

Titles in the
Auerbach Series on Applied Software Engineering

Phillip A. Laplante, Pennsylvania State University, Series Editor

Software and Systems Architecture in Action
Raghvinder Sangwan
978-1-4398-4916-3

Requirements Engineering for Software and Systems, Second Edition
Phillip A. Laplante
978-1-4665-6081-9

Software Engineering Design: Theory and Practice
Carlos E. Otero
978-1-4398-5168-5

Ethics in IT Outsourcing
Tandy Gold
978-1-4398-5062-6

The ScrumMaster Study Guide
James Schiel
978-1-4398-5991-9

Antipatterns: Managing Software Organizations and People,
Second Edition
Colin J. Neill, Philip A. Laplante, and Joanna F. DeFranco
978-1-4398-6186-8

Enterprise-Scale Agile Software Development
James Schiel
978-1-4398-0321-9

Building Software: A Practioner’s Guide
Nikhilesh Krishnamurthy and Amitabh Saran
978-0-8493-7303-9

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J. Paulish,
and Juergen Kazmeier
978-0-8493-9384-6

Software Engineering Quality Practices
Ronald Kirk Kandt
978-0-8493-4633-0

Other Auerbach Publications in Software Development,

Software Engineering, and Project Management

Accelerating Process Improvement
Using Agile Techniques

Deb Jacobs

0-8493-3796-8

The Complete Project Management
Office Handbook

Gerard M. Hill

0-8493-2173-5

Defining and Deploying Software
Processes

F. Alan Goodman

0-8493-9845-2

Embedded Linux System Design
and Development

P. Raghavan, Amol Lad, and Sriram
Neelakandan

0-8493-4058-6

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

Modeling Software with Finite State
Machines

Ferdinand Wagner, Ruedi Schmuki,
Thomas Wagner, and Peter Wolstenholme
0-8493-8086-3

Optimizing Human Capital with a
Strategic Project Office

J. Kent Crawford and

Jeannette Cabanis-Brewin
0-8493-5410-2

A Practical Guide to Information
Systems Strategic Planning,
Second Edition

Anita Cassidy

0-8493-5073-5

Process-Based Software Project
Management

F. Alan Goodman

0-8493-9845-2

Project Management Maturity Model,
Second Edition

J. Kent Crawford

0-8493-7945-8

Real Process Improvement Using
the CMMI®

Michael West

0-8493-2109-3

Reducing Risk with Software Process
Improvement

Louis Poulin

0-8493-3828-X

The ROI from Software Quality
Khaled El Emam
0-8493-3298-2

Software Sizing, Estimation, and

Risk Management

Daniel D. Galorath and Michael W. Evans
0-8493-3593-0

Software Specification and Design:
An Engineering Approach

John C. Munson

0-8493-1992-7

Software Testing and Continuous
Quality Improvement, Second Edition
William E. Lewis

0-8493-2524-2

Strategic Software Engineering:
An Interdisciplinary Approach
Fadi P. Deek, James A.M. McHugh,
and Osama M. Eljabiri
0-8493-3939-1

Successful Packaged Software
Implementation

Christine B. Tayntor
0-8493-3410-1

Preface

Modern-day projects require software and systems engineers to
work together in realizing architectures of large and complex
software-intensive systems. To date, the two have been using
their own concepts, techniques, methods, and tools when
it comes to requirements, design, testing, maintenance, and
evolution of these architectures. This book looks at synergies
between the disciplines of software and systems engineer-
ing and explores practices that can help software and systems
engineers work together more effectively as a unified team.

The book illustrates an approach to architecture design
that is driven from systemic quality attributes determined
from both the business and the technical goals of the sys-
tem rather than just its functional requirements. This ensures
that the architecture of the final system clearly, and traceably,
reflects the most important goals for the system. While super-
ficially the most important goals of any system are its func-
tions, in practicality it is the quality attribute requirements
that have the greatest impact on a system’s lifetime value
because it is these requirements that determine how easily
the system accepts future change and how well the system
meets the reliability and security needs of its operators and
owners. By making these requirements “first-class citizens,”
the architecture meets them first.

Furthermore, most quality attribute requirements are sys-
temic properties: They are properties that the entire system
must reflect rather than just one component or subsystem. They

xi

xii W Preface

therefore cannot be easily built into an existing architecture. In
essence, these properties must be designed into the architecture
from the beginning. The architecture-centric design approach
illustrated in this book addresses this directly by utilizing analyti-
cally derived patterns and tactics for quality attributes that inform
the architect’s design choices and help shape the architecture of
a given system.

The book is organized into eight chapters. Chapter 1
focuses on the importance of architecture in modern-day
systems. The amount and complexity of software in these
systems are on the rise. Avionics software in modern aircraft
has tens of millions of lines of code. In fighter aircraft, this
software controls 80% of what a pilot does. It is not atypi-
cal for a premium-class automobile today to contain close to
100 million lines of code. The same is true for chemical and
nuclear power plants. A large proportion of software in these
systems introduce design and operational complexity, mak-
ing them high-risk systems. This chapter highlights the role of
architecture in managing this complexity and a need for an
architecture-centric engineering approach to designing com-
plex systems that can be used consistently by software and
systems engineers working on such projects.

Chapter 2 looks at the influence of business goals or mis-
sion objectives on the architecture of a system. Business goals
correspond to quality attributes the end system must exhibit.
When using two different versions of a system, you may find
them functionally equivalent but may develop a preference for
one over the other because of its quick response time, ease
of use, ease of modification, or high reliability. Such charac-
teristics of a system are called quality attributes and are the
predominant forces that shape the architecture of a system.
Understanding business goals and their implied quality con-
cerns is therefore critical.

A system operates within a given context or an environ-
ment, and understanding a system'’s operational aspects within
its environment is also extremely important. Chapter 3 looks

Preface ®m xiii

at the concept of operations or ConOps, a term used for the
operational view of the system from the perspective of its
users that gives a broad understanding of the capabilities a
system must deliver to fulfill its mission objectives. An opera-
tional view helps clearly delineate where a system’s boundary
is, what elements in its external environment a system must
interact with, and what those interactions are.

If one must wait for a system to be developed to determine
if it will meet the quality expectations of its stakeholders, there
is an inherent risk that it may not. Architectural restructuring
to achieve the desired qualities at this stage may be extremely
difficult and costly. It is much more desirable to predict the
systemic properties of a system from its design so corrections
can be made before the system is committed to development.
Patterns are known solutions to recurring design problems
and therefore have qualities that can help predict the systemic
properties of the system that is built using them. In prescribing
solutions to problems, patterns may use many design deci-
sions. These design decisions are known as tactics. Patterns
and tactics are topics described in detail in Chapter 4.

When designing a system, one often must consider several
requirements that have a strong influence on its architecture.
Many of these requirements frequently conflict with each
other. For instance, while one requirement may need the sys-
tem to be highly secure, another may need the system to have
quick response time. Making a system secure may introduce
authentication, authorization, and encryption mechanisms
that introduce latency, thereby slowing the system. Chapter 5
explores an approach to creating an architecture that system-
atically addresses the architecturally significant requirements
while also dealing with trade-off situations created by require-
ments that conflict with each other.

Architecture is an artifact that serves many diverse needs for
many diverse stakeholders. For instance, project managers use it
for organizing projects and distributing the work among devel-
opment teams, teams use it as a blueprint for their development

xiv B Preface

work and for understanding how their work depends on those
of others, and maintainers use it to understand the impact of
change as the system evolves over time. Effectively communi-
cating the architecture to meet the diverse needs of a broad set
of stakeholders is the topic of discussion for Chapter 6.

Once the architecture has been designed, the development
teams must then undertake detailed design and implemen-
tation of the individual components that make up the final
product. What is detailed design for one, however, is archi-
tecture to another. It turns out that effort must be invested by
the development teams to develop the internal architecture of
these components as they create the final blueprint for imple-
mentation. The interplay between architectural work and the
detailed design is explored in Chapter 7.

Complexity is the topic of the final chapter, Chapter 8,
which shows how following architecture-centric practices out-
lined in this text can lead to significant reduction in accidental
complexity that is a by-product of development methodologies
that lack focus on systemic properties of a system that have a
strong influence on its architecture.

The fundamental objective of the book is to explore and
illustrate practices that can be helpful in the development of
architectures of large-scale systems in which software is a
major component. It should be particularly useful to those cur-
rently involved in such projects and who are looking at more
effective ways to engage the software and systems engineers
on their teams. The book can be also used as a source for an
undergraduate or graduate-level course in software and sys-
tems architecture as it exposes the students to concepts and
techniques used for creating and managing architectures of
software-intensive systems.

About the Author

Raghvinder (Raghu) Sangwan
is an associate professor of soft-
ware engineering at Pennsylvania
State University. His work
involves design and develop-
ment of software systems, their
architecture, and automatic and -
semiautomatic approaches to

assess their design and code ’

quality. He has published several

papers in these areas. Prior to joining the Pennsylvania State
University, Raghu was a software architect at Siemens, where he
worked on large-scale systems in the domains of health care,
automation, transportation, and mining; many of these systems
were developed by teams geographically distributed around

the world. This experience resulted in his coauthoring the
Global Software Development Handbook and co-organizing the
first International Conference on Global Software Engineering
(ICGSE 20006), sponsored by the Institute for Electrical and
Electronics Engineers (IEEE). He also holds a visiting scientist
appointment at the Software Engineering Institute at Carnegie
Mellon University. He earned his PhD in computer and informa-
tion sciences from Temple University and is a senior member of
IEEE and the Association for Computing Machinery (ACM).

XV

Contents

e T R SPRTE YO8 N VAN WETTAY X S —— xi
About the AMNOr. ..csersossonsansnsssnssssnssessassssnmossisssssnass XV
1 Architecture and Its Significanceccccceuvvurincnnnnnne 1
L1l Inftoduetion . commmssmemvismsisssssssinsssssmienmsssssn s 1
1.2 Rising COMPLEXILY ..ooovvvriiiiiiiiiieiiiiiiccccinies e, 2
1.3 Constant Changecccoivvieiriviiiniiiinneein e 7
1.4 Distributed Developmentcccccovviiiiiiiiiiiniennnne, 9
1.5 Practice for Architecture-Centric Engineering.......... 12
18 TR s comitesesusionssis s et s s s SIS RGRRE 16
1.7 QUEBHONS «cvvmmnsmaminivansssmssismssmaes s usmmsssms ssoo5 SR Has 17
REfEIENCES ...ttt s 17
2 Stakeholders and Their Business Goals................. 19
2.1 INOAUCHON ...ccvvveiiiieiiiiiiiiiiineieee e 19
2.2 Influence of Business Goals on the Architecture20
2.3 Representinig Business GOAlS ;.. ansmssnivessin s 23
2.4 Refining Business GOalS..........ccoocoviveiiiiiciiiiinniiind 26

2.5 Translating Engineering Obijectives into
Architectural Requirements............ccoveveerieriieiianiennnn 27
2.6 Prioritizing Architectural Requirements.................... 33
2.7 SUMMATY ..euiiiiiiiiiiiiiiiiiiiiie e, 34
28 QUESHIORIS i sisoimmis i scenamen i n v i {55 43508 S mmpe i samrsemares 36
RRETETETHOR 10000 0 s e s 35105 505600065, 5655 6 FR SRR 0 508 v e 6 IR
3 Establishing Broad Functional Understanding...... 39
3.1 INErOAUCTON .. oeeiiiiieieiiiie et 39

vii

viii

m Contents

3.2 System CONEXT......coviiuiiiiuiiiiaiiiieciineeeiieienne s 40
3.3 System USE CaASES ...ocuvviiieiiiiiiiiiaiii i 41
3.4 Domain Model...........cooooiiiiieiiiiiiiiieeiieeceeeee 45
3.5 An End-to-End Operational View...........c.ccocveevinnnnn. 47
3.0 CONSIIATNLS 1evvvvvr e eeeee e ee e e e e e eeeeeaesaeeennenes 52
D7 DT s 755.05.0%5.5 ST A A VI S b AL DARENS 54
o BT ¢ (o) RS 55
RETBLBIEEE vinssmsiaismissssmesostsinassssomssssmesmums a3 55
Getting Ready for Designing the Architecture...... 57
4] IOUOGCHON «vovommsesmmmsimsssnssmusmmss sommsmssrssssnss 57
4.2 Architectural Driverscccccceniiiiiiiiii, 59
4.3 PATEEIIIS oot et e e e e e 61
4.3.1 Layered VIEWcccoeeiiiiiiiiiiiiiic i 64
4.3.2 Data FIow VIEWcoooiiiiiiiiieiiieeeeeeeee 67
4.3.3 Data-Centered VIEWcccooervinieeieiinrennn, 69
4.3.4 Adaptation VIEWccccceevrviiirinnineniienrenn, 71
4.3.5 Language Extension VIEW.........ccccceeeviieeannn, 72
4.3.6 User Interaction VIEW..........ccocceevveerieereineennnn 75
4.3.7 Component Interaction Viewccceene 77
4.3.8 Distribution VIeW.........cooooviiiiiiiiininiiniiiiiineenn, 79
4.4 What Is @ TaCtC?vvviiiiiiiiiiiiiiii e 81
4.4.1 Tactics for Availability............ccccoviiiiinnnnn. 82
4.4.2 Tactics for Interoperabilitycccvieiiiiinn. 85
4.4.3 Tactics for Modifiabilityccooiiiinnnn. 87
4.4.4 Tactics for Performance..............cc.coooeeeee 90
4.4.5 Tactics for SEEUITY s vuswmsmssssin sonmmumsvsamssmiss 92
4.4.6 Tactics for Testabilityc.cocooveiiiieiiiiieennn. 94
4.4.7 Tactics for Usability ..., 95
4.5 SUMMIATY . covvetiriiieiie ettt 96
4.0 QUESHIONS ...ccnvveeeeriereaiieeiiiieee e e siine e et eeesaneee s eaeas 97
IRELETOTAES . s s s s s ms e ¥ N R R AN TR R R A A FEAEATS 98
Creating the Architecture........cccccceiiieicniencnncancnees 101
5.l ITOAMCTON ic: s somamsssman s sssssimmsasonsshims s 5w sasmasns 101

5.2 Architecture of the Building Automation System...103
5.2.1 Support for Adding New Field Devices 106

Contents ® ix

5.2.2 Addressing Latency and Load Conditions ... 110
5.2.3 Addressing International Language Support... 113

5.3 Architecture Trade-Offs.........cccccooviiiiiiiiiieninn, 116
5.3.1 Revisiting Modifiability Drivers................... 116
5.3.2 Revisiting Performance Drivers.................... 118

5.4 The Final Architecture.........cc.cocoovvviiiiiiiniiniiieennienn, 120

DD OUITIIERBIN v 0m50 055 e 39558 55 5 T 8 58 e 120

Bl CQOBTHOIS e cvsoionins imomies s s s ssssguins sap sn o 122

RETETEIITES +sss0vsessmaymimmsmvmemnns isssmmmres i TS oHaNaA 127

Communicating the Architecturecccceeveueanens 129

6i] OIEOAUCTHOM 1 isomonn o sssicnsiasimsissinsiss s sn s e mmns 129

6.2 Views as a Basis for Documentation...................... 130

6.3 Documenting a VIeWcc.ccceevueeeeeveiieeeieinnnn. 131

6.4 Building an Architecture Description Document... 132

6.5 Architecture Description for the Building

Automation SYSIeM........ccooiiiiiiiuiiiiiiiiiiiiiiiieiaiieees 133
6.5.1 Section 1: Document Road Map 133
6.5.1.1 Section 1.1: Description of the
Architecture Documentation 133
6.5.1.2 Section 1.2: How Stakeholders
Can Use the Documentation 134
6.5.2 Section 2: System OVerview.............ccc..o...... 136
6.5.2.1 Section 2.1: Business Goals 136
6.5.2.2 Section 2.2: System Context............ 137
6.5.2.3 Section 2.3: Functions..................... 140
6.5.2.4 Section 2.4: Quality Attribute
Requirements.covuveivvieiiiinnnnnns 142
6.5.2.5 Section 2.5: Constraints................... 143
6.5.2.6 Section 2.6: Architectural Drivers... 143
6.5.3 Section 3: View Template...............cccooeenne.n. 145
0.5.4 Section 4: VIEWScccovioueeeeeeaeeeeeeeeiiane, 145
6.5.4.1 Section 4.1: Module View 145
6.5.4.2 Section 4.2: Component-and-
Connector VIEWcccvvvvieiiiivieeeiinnn, 146

6.5.4.3 Section 4.3: Deployment View 155

x @ Contents

6.5.5 Section 5: Mapping between Views............. 157
6.5.6 Section 6: Rationalecccocoviviviiiieincnnn. 160

0.0 CONCIUSIONS.....oviviiiiiiiiiiiieeiii e 160
0.7 QUESHONSoveiviieiciieciiieecie e 162
REFEIENCES oviiieiiiiiiieee e e 162
7 Architecture and Detailed Designc.cceevuveennnnnn. 163
7.1 INrOAUCHONcovnivieeriiieeiiieeeeieis et siee e e nannes 163
7.2 Dehnitg IIEITATES : oo i i s s wasus smmsaesnsss 164
7.3 Creating the Domain Object Model........................ 164
P B R TR R —— 167
7.3.1 Addressing Architectural Responsibilities 169
7.3.2 Addressing Functional Responsibilities........ 174

7.4 SUMMATY.....coooiiiiiiiiiiiiiii s 174
7.5 QUESHION ..ttt 177
RETETOIIEES 12051178 oo s 0 0 T A0 S i 177

8 Role of Architecture in Managing Structural

COMPIEXILY s uissvsiorsusvrisssanissravessssnsosnossssssvssnonnsssne 179
8.1 INHOTUCHON wisui s smsmsmimsonvmmminsissnismsssiss s mmemms o 179
8.2 Analyzing System COMPIEXItY .. oueswvvsmsisssonsrsssvansnss 180
8.2.1 Partidoning @ IDEBM .ussssscorsemesesmsassimmensenss 182
8.2.2 Partitioning Algorithmscccocceviiiiinn. 184
8.2.3 Tearing a DSMc.ccooiiiiiiiiiiiiiiie e, 186
8.3 Managing Structural Complexityc.cccevvreriinnen. 189
8.3.1 Testing the Hypothesis.............ccccoeviiiiiinnnne. 190
8.4 Discussion and Conclusions.c.c..coovevievincnnn. 196
8.5 Discussion QUESHONSvviiiviiiieiiiiiieiiiiiiineeeiinn, 197
REICTORGES e tonsd s basamsnas 84558 S04 I GV R SO DR e 198

