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Preface

Modern-day projects require software and systems engineers to
work together in realizing architectures of large and complex
software-intensive systems. To date, the two have been using
their own concepts, techniques, methods, and tools when
it comes to requirements, design, testing, maintenance, and
evolution of these architectures. This book looks at synergies
between the disciplines of software and systems engineer-
ing and explores practices that can help software and systems
engineers work together more effectively as a unified team.

The book illustrates an approach to architecture design
that is driven from systemic quality attributes determined
from both the business and the technical goals of the sys-
tem rather than just its functional requirements. This ensures
that the architecture of the final system clearly, and traceably,
reflects the most important goals for the system. While super-
ficially the most important goals of any system are its func-
tions, in practicality it is the quality attribute requirements
that have the greatest impact on a system’s lifetime value
because it is these requirements that determine how easily
the system accepts future change and how well the system
meets the reliability and security needs of its operators and
owners. By making these requirements “first-class citizens,”
the architecture meets them first.

Furthermore, most quality attribute requirements are sys-
temic properties: They are properties that the entire system
must reflect rather than just one component or subsystem. They
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therefore cannot be easily built into an existing architecture. In
essence, these properties must be designed into the architecture
from the beginning. The architecture-centric design approach
illustrated in this book addresses this directly by utilizing analyti-
cally derived patterns and tactics for quality attributes that inform
the architect’s design choices and help shape the architecture of
a given system.

The book is organized into eight chapters. Chapter 1
focuses on the importance of architecture in modern-day
systems. The amount and complexity of software in these
systems are on the rise. Avionics software in modern aircraft
has tens of millions of lines of code. In fighter aircraft, this
software controls 80% of what a pilot does. It is not atypi-
cal for a premium-class automobile today to contain close to
100 million lines of code. The same is true for chemical and
nuclear power plants. A large proportion of software in these
systems introduce design and operational complexity, mak-
ing them high-risk systems. This chapter highlights the role of
architecture in managing this complexity and a need for an
architecture-centric engineering approach to designing com-
plex systems that can be used consistently by software and
systems engineers working on such projects.

Chapter 2 looks at the influence of business goals or mis-
sion objectives on the architecture of a system. Business goals
correspond to quality attributes the end system must exhibit.
When using two different versions of a system, you may find
them functionally equivalent but may develop a preference for
one over the other because of its quick response time, ease
of use, ease of modification, or high reliability. Such charac-
teristics of a system are called quality attributes and are the
predominant forces that shape the architecture of a system.
Understanding business goals and their implied quality con-
cerns is therefore critical.

A system operates within a given context or an environ-
ment, and understanding a system'’s operational aspects within
its environment is also extremely important. Chapter 3 looks
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at the concept of operations or ConOps, a term used for the
operational view of the system from the perspective of its
users that gives a broad understanding of the capabilities a
system must deliver to fulfill its mission objectives. An opera-
tional view helps clearly delineate where a system’s boundary
is, what elements in its external environment a system must
interact with, and what those interactions are.

If one must wait for a system to be developed to determine
if it will meet the quality expectations of its stakeholders, there
is an inherent risk that it may not. Architectural restructuring
to achieve the desired qualities at this stage may be extremely
difficult and costly. It is much more desirable to predict the
systemic properties of a system from its design so corrections
can be made before the system is committed to development.
Patterns are known solutions to recurring design problems
and therefore have qualities that can help predict the systemic
properties of the system that is built using them. In prescribing
solutions to problems, patterns may use many design deci-
sions. These design decisions are known as tactics. Patterns
and tactics are topics described in detail in Chapter 4.

When designing a system, one often must consider several
requirements that have a strong influence on its architecture.
Many of these requirements frequently conflict with each
other. For instance, while one requirement may need the sys-
tem to be highly secure, another may need the system to have
quick response time. Making a system secure may introduce
authentication, authorization, and encryption mechanisms
that introduce latency, thereby slowing the system. Chapter 5
explores an approach to creating an architecture that system-
atically addresses the architecturally significant requirements
while also dealing with trade-off situations created by require-
ments that conflict with each other.

Architecture is an artifact that serves many diverse needs for
many diverse stakeholders. For instance, project managers use it
for organizing projects and distributing the work among devel-
opment teams, teams use it as a blueprint for their development
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work and for understanding how their work depends on those
of others, and maintainers use it to understand the impact of
change as the system evolves over time. Effectively communi-
cating the architecture to meet the diverse needs of a broad set
of stakeholders is the topic of discussion for Chapter 6.

Once the architecture has been designed, the development
teams must then undertake detailed design and implemen-
tation of the individual components that make up the final
product. What is detailed design for one, however, is archi-
tecture to another. It turns out that effort must be invested by
the development teams to develop the internal architecture of
these components as they create the final blueprint for imple-
mentation. The interplay between architectural work and the
detailed design is explored in Chapter 7.

Complexity is the topic of the final chapter, Chapter 8,
which shows how following architecture-centric practices out-
lined in this text can lead to significant reduction in accidental
complexity that is a by-product of development methodologies
that lack focus on systemic properties of a system that have a
strong influence on its architecture.

The fundamental objective of the book is to explore and
illustrate practices that can be helpful in the development of
architectures of large-scale systems in which software is a
major component. It should be particularly useful to those cur-
rently involved in such projects and who are looking at more
effective ways to engage the software and systems engineers
on their teams. The book can be also used as a source for an
undergraduate or graduate-level course in software and sys-
tems architecture as it exposes the students to concepts and
techniques used for creating and managing architectures of
software-intensive systems.
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