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Developmental biology is at the core of all biologv. It deals with the
process by which the genes in the fertilized egg control cell behavior
in the embryvo and so determine its pattern, its form, and much of its
behavior. The progress in developmental biology in recent vears with
the applications of advances in cell and molecular biologv, has been
remarkable and an enormous amount of information is now available.

Principles of Development is designed for undergraduates as well as
graduates, and the emphasis is on principles and key concepts. Central
lo our approach is that development can be best understood by under-
standing how genes control cell behavior. We have assumed that the
students have some very basic familiarity with cell biologv and genetics,
but all key concepts, like the control of gene activity, are explained in
the text.

Conscious of the pressures on students, we have (ried to make the
principles as clear as possible and to provide numerous summaries,
both in words and in pictures. The illustrations in the book are a special
feature and have been carefully designed and chosen to illuminate both
experiments and mechanismes.

We have resisted the temptation to cover every aspect of development

and have, instead, focused on those svstems that best illuminate common

principles. Indeed a theme that runs throughout the book is that universal

principles govern the process of development. At all stages, what we

included has been guided by what we believe undergraduates should
5 ] 5

know about development.

We have thus concentrated our attention on vertebrates and Drosophila,
but not to the exclusion of the other svstems, such as nematodes and
sea urchins, where they best illustrate a concepl. An important feature
of our book is the inclusion of the development of plants, which is usually
neglected in text books. There have been striking advances in plant devel-
opmental biology in recent times, and some unique and important
features have emerged. As knowing the basic features of the embrvology
of the main organisms used to study development is essential for an
understanding of molecular mechanisms, we have introduced embry-
ology at an early stage.

Preface
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Whereas our emphasis has been on the laving down of the body plans
and organ svstems, such as limbs and the nervous system, we have also
included later aspects of development, including growth and regeneration.
The book concludes with a consideration of evolution and development.

In providing references, our prime concern has been to guide the
students to helpful papers rather than giving credit to the scientists who
have made major contributions: to those whom we have neglected, we
apologize.

The wayv the book was written was rather special. Although I was in
continual consultation with my co-authors, I did all the writing—and 1
mean writing, which was skillfully tvped by Maureen Moloney. Each
chapter was also reviewed by a number of experts (see page xv), Lo
whom we give thanks. The text was initiallv edited, and often re-written,
by Eleanor Lawrence, whose expertise and influence pervades the
book. Further critical editing was carried out by Hazel Richardson. And
Huw Woodman magically turned the whole text into finished pages.

Central to the book are the illustrations, which were brilliantlv created
or adapted by Matthew McClements. The whole complex project was
masterfully managed by Giles Montier. Particularly to Giles and Matthew,
I offer my thanks for their patient dealing with my impatience and
incompetence. The complete team was a pleasure, even fun, to work with.

Finallv my thanks to Peter Newmark, the head of Current Biology Litd.,
and to Vitek Tracz, the head of the Current Science Group; without
them, the book would never have been started, let alone completed.

Lewis Wolpert
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Chapter 8: Morphogenesis: Change in Form in the

Early Embryo
Cell adhesion. 232-235
8-1 Sorting out of dissociated cells demonstrates 999
differences in cell adhesiveness in different tissues.
Box 8A Cell adhesion molecules. 233
8-2 Cadherins can provide adhesive specificity. 234
Cleavage and formation of the blastula. 235-242
8-3 The asters of the mitotic apparatus determine the 237
plane of cleavage at cell division.
8-4 Cells become polarized in early mouse and sea 238
urchin blastulas.
8-5 lon transport is involved in fluid accumulation in 240
the blastocoel.
8-6 Internal cavities can be created by cell death. 241
Gastrulation. 242-253
8-7 Gastrulation in the sea urchin involves cell 243

migration and invagination.
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Box 8B Change in cell shape and cell movement. 244
8-8 Mesoderm invagination in Drosophila is due to 246
changes in cell shape, controlled by genes that pattern
the dorso-ventral axis.
8-9 Xenopus gastrulation involves several different 247
types of tissue movement.
8-10 Convergent extension and epiboly are due to cell 250
intercalation.
8-11 Notochord elongation is caused by cell intercalation. 252
Neural tube formation. 254-256
8-12 Neural tube formation is driven by both internal 254
and external forces.
8-13 Changes in the pattern of expression of cell 255
adhesion molecules accompany neural tube formation.
Cell migration. 256-262
8-14 The directed migration of sea urchin primary 257
mesenchyme cells is determined by the contacts of
their filopodia to the blastocoel wall.
8-15 Neural crest migration is controlled by environ- 258
mental cues and adhesive differences.
8-16 Slime mold aggregation involves chemotaxis and 260
signal propagation.
Directed dilation. 262-265
8-17 Circumferential contraction of hypodermal cells 263
elongates the nematode embryo.
8-18 The direction of cell enlargement can determine 263
the form of a plant leaf.

Chapter 9: Cell Differentiation
The reversibility and inheritance of patterns of 271-281
gene activity.
9-1 Nuclei of differentiated cells can support develop- 272
ment of the egg.
9-2 Patterns of gene activity in differentiated cells 273
can be changed by cell fusion.
9-3 The differentiated state of a cell can change by 274
transdifferentiation.
9-4 Differentiation of cells that make antibodies is due 276
to irreversible changes in their DNA.
9-5 Maintenance and inheritance of patterns of gene 277
activity may depend on regulatory proteins, as well
as chemical and structural modifications of DNA.
Control of specific gene expression. 281-286
9-6 Control of transcription involves both general 282
and tissue-specific transcriptional regulators.
9-7 External signals can activate genes. 284
Models of cell differentiation. 287-299
9-8 A family of genes can activate muscle-specific 287

transcription.

9-9 The differentiation of muscle cells involves 288

withdrawal from the cell cycle.

9-10 Complex combinations of transcription factors 289

control cell differentiation.

9-11 All blood cells are derived from pluripotent 290

stem cells.

9-12 Colony-stimulating factors and intrinsic changes 291

control differentiation of the hematopoietic lineages.

9-13 Globin gene expression is controlled by distant 293

upstream regulatory sequences.

9-14 Neural crest cells differentiate into several cell types. 295

9-15 Steroid hormones and polypeptide growth factors 297

specify chromaffin cells and sympathetic neurons.

9-16 Neural crest diversification involves signals for 297

both specification of cell fate and selection for cell

survival.

9-17 Programmed cell death is under genetic control. 298
Chapter 10: Organogenesis

The development of the chick limb. 304-319

10-1 The vertebrate limb develops from a limb bud. 305

10-2 Patterning of the limb involves positional 305

information.

10-3 The apical ectodermal ridge induces the 307

progress zone.

10-4 The polarizing region specifies position along 308

the antero-posterior axis.

10-5 Position along the proximo-distal axis may be 311

specified by a timing mechanism.

10-6 The dorso-ventral axis is controlled by the 312

ectoderm.

10-7 Different interpretations of the same positional 312

signals give different limbs.

10-8 Homeobox genes are involved in patterning the 313

limbs and specifying their position.

10-9 Self-organization may be involved in pattern 315

formation in the limb bud.

10-10 Limb muscle is patterned by the connective tissue. 316

Box 10A Reaction-diffusion mechanisms. 317

10-11 The initial development of cartilage, muscles, 318

and tendons is autonomous.

10-12 Separation of the digits is the result of 318

programmed cell death.

Insect imaginal discs. 320-327

10-13 Signals from the antero-posterior compartment 321

boundary pattern the wing imaginal disc.

10-14 The dorso-ventral boundary of the wing acts as a 322

pattern-organizing center.

10-15 The leg disc is patterned in a similar manner to 323

the wing disc, except for the proximo-distal axis.

10-16 Butterfly wing markings are organized by 324

additional positional fields.



