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Preface

In the decade of the nineties, a good deal of attention was given to critically as-
sessing traditional pedagogy and to exploring means by which student learning
may be enhanced. With respect to the development of educational tools and cur-
ricula, this assessment has stimulated serious consideration of learning objec-
tives and means of determining the extent to which prescribed objectives are
being met.

The foregoing trend prompts the following questions. What are appropriate
learning objectives for a first course in heat transfer? Is the structure of the
course, as well as the textbook for the course, consonant with these objectives?

From our perspective, the following four learning objectives are desired at-
tributes of any first course in heat transfer.

(1) The student should internalize the meaning of the terminology and physical
principles associated with the subject.

(2) The student should be able to delineate pertinent transport phenomena for
any process or system involving heat transfer.

(3) The student should be able to use requisite inputs for computing heat trans-
fer rates and/or material temperatures.

(4) The student should be able to develop representative models of real
processes and systems and to draw conclusions concerning process/system
design or performance from the attendant analysis.

The first objective constitutes a primary level of learning that must be
achieved if the remaining objectives are to be realized. It is precisely what we
have in mind when we tell our students that they must learn the fundamentals.
And, we might add, it is the source of one of our greatest frustrations when we
discover that they are not meeting our expectations. In such cases, where does
the fault lie?

Certainly, some students do not put forth the effort needed to assimilate
knowledge of the fundamentals. Or, perhaps their efforts are disproportionately
directed to solving the problem of the day, and they do not take the time to read
carefully or to think at any more than a superficial level about the subject mat-
ter. However, some of the fault may lie with us, their teachers. Perhaps we are
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too quick to move to analysis and problem solving and thereby devote insuffi-
cient time to concepts.

Both the richness of the heat transfer discipline and the learning difficulties
that it often poses to students are attributable to the great diversity of its physi-
cal concepts. Consider just a few.

* What are the physical mechanisms associated with transport by conduction,
convection, and radiation?

e What is an isothermal surface? An isoflux surface? When are such surface
conditions achieved, at least to a reasonable approximation?

* What is the inherent nature of a combined conduction/convection system?

¢ What are the inherent features of laminar, turbulent, and separatéd flows? Of
forced and natural convection? Of internal and external flow?

* What is the spectral and directional nature of radiation? What is a diffuse sur-
face? A gray surface?

* What is the physical nature of terms associated with the first law of thermody-
namics? How do conditions differ for application to a volume of matter and at
a surface? To a steady process and a transient process?

These examples provide a very small subset of the many concepts which our
students should understand and have the facility to use with confidence. If they
are to develop habits of mind appropriate to heat transfer, they must achieve a
level of comfort with the many terms and concepts intrinsic to the discipline.

The second and third learning objectives represent a matched pair of
skills that is sequentially used in heat transfer analysis. Pertinent heat transfer
processes and energy flows are first identified, and appropriate assumptions are
made. Relevant rate equations, conservation laws, material properties, and coef-
ficients are introduced, and calculations are performed. In any first course on
heat transfer, it is reasonable to expect achievement of the first through the third
objectives for all students.

The fourth objective may appear to be a restatement of the second and '
third objectives, but it is intended to be much more. Achievement of this level
of learning implies the ability to think critically and creatively when solving
complex problems with multiple transport modes. The solution methodology in-
volves synthesis and integration of diverse inputs, as well as a good deal of
judgment, in the development of models and interpretation of results. The abil-
ity to transition from modeling simple and/or highly idealized systems to real
and generally complex systems is likely to be achieved by only a subset of stu-
dents and then only in later stages of the course. If the first objective provides
the cornerstone to a house of learning, the fourth objective is its capstone. Pro-
gression from Level 1 to Level 4 involves increasing familiarity with the sub-
ject matter and confidence in one’s ability to obtain useful results from realistic
models of process/system behavior.

In this edition of the text, we have attempted to clarify learning objectives
for each chapter and to enhance means by which they are achieved, as well as
means by which achievement may be assessed. The summary of each chapter
has been expanded to highlight key terminology and concepts developed in the
chapter, and to pose questions that test and enhance student comprehension. Rec-
ognizing the contribution that verbalization can make to learning, the questions
may also be used to stimulate student discussion in and out of the classroom.
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We have also attempted to simplify the introduction to convection transfer
by culling derivations of the related transfer equations from Chapter 6 and rele-
gating them to Appendix F, where they can be accessed by those interested in
details of the derivations. In the streamlined version of Chapter 6, consideration
is still given to physical conditions within the boundary layer(s), the nature of
the boundary layer equations, and boundary layer similitude, including impor-
tant analogies.

A total of 289 new problems have been developed for this edition of the
book. To sharpen the focus on fundamentals, a large percentage of these prob-
lems deals more explicitly with basic principles, but in the context of simpler
applications for which solutions are less onerous. Another family of new prob-
lems is linked to the examples of the text and is intended to reinforce concepts
introduced by the examples, as well as to explore related issues. Many of the
examples themselves have been amplified to better achieve learning objectives.
In addition, a significant number of new problems deal with more complex
(Level 4) issues and models, for which computer-based solutions facilitate
parametric considerations.

For problems involving complex models and/or exploratory, what-if, and
parameter sensitivity considerations, it is recommended that they be addressed
by using a computer with an equation-solving package. Although students can
create and solve their models using software with which they are already famil-
iar, the Windows ™-based software packages developed for this text offer dis-
tinct advantages as learning and productivity tools. Termed Interactive Heat
Transfer (IHT) and developed by IntelliPro, Inc. of New Brunswick, New Jer-
sey, the first software package is fully integrated with the text, using the same
methodologies and nomenclature. Termed Finite Element Heat Transfer
(FEHT) and developed by F-Chart Software of Middleton, Wisconsin, the sec-
ond package provides enhanced capabilities for solving conduction heat transfer
problems.

IHT provides a model-building, problem-solving environment, which in-
cludes a pre-processor, a solver, and a post-processor. The pre-processor en-
compasses a work space, into which equations may be entered from existing
modules and/or tool pads, as well as from the keyboard. The modules include
six models that deal with applications of the first law; resistance networks;
one-dimensional, steady-state conduction; extended surfaces; transient,
lumped-capacitance systems; and transient, one-dimensional conduction.
The tool pads provide widely used rate equations, thermal conduction resis-
tances, finite-difference equations, and convection correlations, as well as
standard expressions for analyzing heat exchangers and radiation exchange
between surfaces. An additional tool pad provides access to temperature-
dependent thermophysical properties of common solids, gases, and liquids.

The IHT solver provides comprehensive, equation-solving capabilities,
while the post-processor includes an explore option for parameter sensitivity
studies, a browser for tabulating results, and a graphical option for plotting re-
sults. The model-building, problem-solving capabilities of IHT facilitate imple-
mentation of the methodologies espoused in the text, as well as execution of
design and what-if considerations.

FEHT provides enhanced capabilities for treating steady-state and transient
one- and two-dimensional conduction problems. It includes a Problem Defini-
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tion function that is used to establish the geometrical features, the correspond-
ing finite-element mesh, and the boundary and initial conditions of the problem.
A Run function checks for proper discretization of the problem before executing
a numerical solution. The Output function provides several options for repre-
senting results of the calculations, including tabulated temperature fields, tem-
perature contours, and heat flow lines.

IHT and FEHT have tutorials, examples, and help menus that are user
friendly and enable implementation of the software with minimal learning re-
quirements. However, in using the software, it is important to recognize that it
is not a collection of pre-solved problems to be exercised for different input
conditions. Rather, each should be viewed as a productivity tool that facilitates
model development and solution for the broad range of problems embodied in
the topical coverage of this text.

To minimize frustrations associated with obtaining incorrect results from
an incorrect computer model, many of the computer-based problems of this text
appear as extensions to problems that can be solved by performing hand calcu-
lations. In this way students may first develop and solve their models under pre-
scribed conditions for which there is a single solution. They may then use this
solution to validate their computer model and to proceed with parametric stud-
ies that explore related design or operating conditions. Such problems are iden-
tified by enclosing the exploratory part in a red rectangle, as, for example, ,
, or . This feature also permits instructors wishing to limit the assign-
ment of computer-based problems to still benefit from the richness of these
problems by assigning all but the highlighted versions. Solutions to problems
for which the number itself is highlighted, as, for example, , should be en-
tirely computer-based.

We continue to be indebted to numerous colleagues around the world who
have provided ideas and suggestions that, in no small way, have contributed to
the fabric of this text. We have always strived to remain cognizant of student
learning needs and difficulties, and we are grateful to the many students, at Pur-
due, Notre Dame, and elsewhere, who have provided positive reinforcement for
our efforts.

Finally, we would be remiss if we did not acknowledge the Herculean ef-
fort of Andrea Incropera, who processed the solutions to the end-of-chapter
problems in this text. She did so with great care and patience, for which, we are
both grateful.

Frank P. Incropera (fpi@nd.edu)
Notre Dame, Indiana

David P. DeWitt (dpd @purdue.edu)
West Lafayette, Indiana



Symbols

A area, m’

area of prime (unfinned) surface, m?

cross-sectional area, m?

free-flow area in compact heat exchanger
core (minimum cross-sectional area
available for flow through the core), m*

heat exchanger frontal area, m

fin profile area, m?

nozzle area ratio

acceleration, m/s’

Biot number

Bond number

molar concentration, kmol/m?; heat
capacity rate, W/K

drag coefficient

friction coefficient

thermal capacitance, J/K

specific heat, J/kg - K; speed of light, m/s

specific heat at constant pressure, J/kg * K

specific heat at constant volume, J/kg * K

diameter, m

binary mass diffusion coeffeicient, m¥/s

hydraulic diameter, m

thermal (sensible) internal energy, J;
electric potential, V; emissive power,
W/m?

Eckert number

rate of energy generation, W

rate of energy transfer into a control
volume, W

rate of energy transfer out of control
volume, W

rate of increase of energy stored within a
control volume, W

Fo

h rad

Ja
JE

Ji

Jn

thermal internal energy per unit mass,
J/kg; surface roughness, m

force, N; heat exchanger correction
factor; fraction of blackbody radiation
in a wavelength band; view factor

Fourier number

friction factor; similarity variable

irradiation, W/m?; mass velocity, kg/s *
m?

Grashof number

Graetz number

gravitational acceleration, m/s’

gravitational constant, 1 kg + m/N - s? or
32.17 ft - Ib,/lb; - s

nozzle height, m

convection heat transfer coefficient,
W/m? - K; Planck’s constant

latent heat of vaporization, J/kg

convection mass transfer coefficient, m/s

radiation heat transfer coefficient, W/m?
K

electric current, A; radiation intensity,
W/m? - sr

electric current density, A/m’, enthalpy
per unit mass, J/kg

radiosity, W/m?

Jakob number

diffusive molar flux of species i relative
to the mixture molar average velocity,
kmol/s - m?

diffusive mass flux of species i relative
to the mixture mass average velocity,
kg/s - m?

Colburn j factor for heat transfer
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Jis Colburn j factor for mass transfer

k thermal conductivity, W/m - K;
Boltzmann’s constant

ko zero-order, homogeneous reaction rate
constant, kmol/s - m?

k, first-order, homogeneous reaction rate
constant, s

k; first-order, homogeneous reaction rate
constant, m/s

L characteristic length, m

Le Lewis number

M mass, kg; number of heat transfer lanes
in a flux plot; reciprocal of the Fourier
number for finite-difference solutions

M,- rate of transfer of mass for species, i,
kg/s

M, rate of increase of mass of species i due
to chemical reactions, kg/s

M, rate at which mass enters a control
volume, kg/s

M, rate at which mass leaves a control
volume, kg/s

M, rate of increase of mass stored within a
control volume, kg/s

M; molecular weight of species i, kg/kmol

m mass, kg

] mass flow rate, kg/s

m; mass fraction of species i, p;/p

N number of temperature increments in a
flux plot; total number of tubes in a
tube bank; number of surfaces in an
enclosure

N, ,N;  number of tubes in longitudinal and
transverse directions

Nu Nusselt number

NTU number of transfer units

f molar transfer rate of species i relative to

fixed coordinates, kmol/s

N/ molar flux of species i relative to fixed
coordinates, kmol/s - m?

N,- molar rate of increase of species i per
unit volume due to chemical reactions,
kmol/s - m*

M' surface reaction rate of species i, kmol/s
- m?

n; mass flux of species i relative to fixed
coordinates, kg/s - m’

n; mass rate of increase of species i per unit
volume due to chemical reactions,
kg/s - m?

P perimeter, m; general fluid property
designation

P,,P;  dimensionless longitudinal and
transverse pitch of a tube bank

Pe Peclet number (RePr)

Pr Prandtl number

P pressure, N/m?

Q energy transfer, J

u, v, w

Wk, 0¥ wk

FEIET <

XY Z

X ) 2

o

Xide
Xidh
Xid ¢

heat transfer rate, W

rate of energy generation per unit
volume, W/m®

heat transfer rate per unit length, W/m

heat flux, W/m?

cylinder radius, m

universal gas constant

Rayleigh number

Reynolds number

electric resistance, ()

fouling factor, m” - K/W

mass transfer resistance, s/m’

residual for the m, n nodal point

thermal resistance, K/W -

thermal contact resistance, K/W

fin thermal resistance, K/W

thermal resistance of fin array, K/W

cylinder or sphere radius, m

cylindrical coordinates

spherical coordinates

solubility, kmol/m® + atm; shape factor
for two-dimensional conduction, m;
nozzle pitch, m; plate spacing, m

solar constant

diagonal, longitudinal and transverse
pitch of a tube bank, m

Schmidt number

Sherwood number

Stanton number

temperature, K

time, s

overall heat transfer coefficient, W/m? «
K internal energy, J

mass average fluid velocity
components, m/s

molar average velocity components,
m/s

volume, m?; fluid velocity, m/s

specific volume, m*/kg

width of a slot nozzle, m

rate at which work is performed, W

Weber number

components of the body force per unit
volume, N/m*

rectangular coordinates, m

critical location for transition to
turbulence, m

concentration entry length, m

hydrodynamic entry length, m

thermal entry length, m

mole fraction of species i, C;/C

Greek Letters

(¢4

thermal diffusivity, m%s; heat
exchanger surface area per unit
volume, m*m?*; absorptivity

volumetric thermal expansion
coefficient, K™
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r mass flow rate per unit width in film
condensation, kg/s - m

é hydrodynamic boundary layer thickness,
m

S, concentration boundary layer thickness,
m

8, thermal boundary layer thickness, m

& emissivity; porosity of a packed bed;
heat exchanger effectiveness

& fin effectiveness

&n turbulent diffusivity for heat transfer,
m%/s

&m turbulent diffusivity for momentum
transfer, m’s

Enm turbulent diffusivity for mass transfer,
m?/s

n similarity variable

L fin efficiency

Mo overall efficiency of fin array

0 zenith angle, rad; temperature difference,
K

K absorption coefficient, m '

A wavelength, um

o viscosity, kg/s - m

v kinematic viscosity, m%s; frequency of
radiation, s

P mass density, kg/m?; reflectivity

o Stefan-Boltzmann constant, electrical
conductivity, 1/€) - m; normal viscous
stress, N/m?; surface tension, N/m;
ratio of heat exchanger minimum
cross-sectional area to frontal area

0] viscous dissipation function, s>

¢ azimuthal angle, rad

U stream function, m?/s

T shear stress, N/m?; transmissivity

® solid angle, sr

Subscripts

A, B species in a binary mixture

abs absorbed

am arithmetic mean

b base of an extended surface; blackbody

c cross-sectional; concentration; cold fluid

cr critical insulation thickness

cond conduction

conv convection

X1X

CF counterflow

D diameter; drag

dif diffusion

e excess, emission

evap evaporation

f fluid properties; fin conditions; saturated
liquid conditions

fd fully developed conditions

g saturated vapor conditions

H heat transfer conditions

h hydrodynamic; hot fluid

i general species designation; inner
surface of an annulus, initial
condition; tube inlet condition;
incident radiation

L based on characteristic length

1 saturated liquid conditions

lat latent energy

Im log mean condition

M momentum transfer condition

m mass transfer condition; mean value over
a tube cross section

max maximum fluid velocity

o center or midplane condition; tube outlet
condition; outer

R reradiating surface

r,ref  reflected radiation

rad radiation

S solar conditions

s surface conditions; solid properties

sat saturated conditions

sky sky conditions

sur surroundings

t thermal

tr transmitted

v saturated vapor conditions

ps local conditions on a surface

A spectral

o0 free stream conditions

Superscripts

! fluctuating quantity

% molar average; dimensionless quantity

Overbar

surface average conditions; time mean
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