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Preface

Many structural components used in the industrial facilities for energy re-
sources, petrochemical, aeronautical and aerospace engineering are operating
at high temperatures. For instance, the vapor temperature in a thermal power
station is about 600 C; the temperatures for hydrogen production and ethyl-
ene-cracking are as high as 950 ‘C and 1050 °C, respectively; and the working
temperatures of turbine blades in an aircraft exceed 1000 ‘C. High tempera-
ture strength is therefore the major concern of these materials.

High temperature strength is defined as the resistance of a material to
high temperature deformation and fracture. The definition of high temperature
is the temperatures at which the atomic diffusion is fast enough to affect sig-
nificantly the plastic deformation and fracture behaviors of materials. Usual-
ly, for metallic alloys the temperatures considered are higher than one half of
their melting points (T,). Atomic diffusion is a time-dependent process;
hence the deformation and fracture of materials at high temperatures are relat-
ed to the duration of loading. Therefore, time-dependent parameters, the
strain rate and the fracture life, must be introduced in describing the high
temperature strain-stress behavior of materials. In the description of the room
temperature mechanical behaviors of metallic alloys, the duration of loading
plays rather a less important role. In addition, the chemical or electrochemical
reaction kinetics can be very fast at high temperatures. The description, in or-
der to be reliable, has to be made by taking the high temperature environmen-
tal properties of materials into consideration.

High temperature deformation and fracture is truly an interdisciplinary
subject, The many theories developed for high temperature deformation and
fracture are mainly based on dislocation and diffusion, but every stage of their
development resorts to the fundamental principles of solid state physics, phys-
ical metallurgy, elastic-plastic mechanics, fracture mechanics and damage me-
chanics, and so forth. High temperature deformation and fracture has long
been one of the most active research topics in materials science and engineer-
ing. Since the 1970s, remarkable progress has been achieved in developing the
relevant microscopic models and theories. In the mean time, research and de-
velopment activity has also been extensively carried out on new high tempera-
ture materials such as intermetallic compounds, ceramics, polymers and com-
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posite materials, and ample experimental data have been documented. The
idea of writing this book grew out of an attempt for a systematic survey of the
research results obtained in the high temperature deformation and fracture
community during the past four decades.

In this book, we describe the general macroscopic behaviors of high tem-
perature deformation and fracture shown by various materials, and introduce
the mechanisms proposed at two microscopic length scales, i, e, , the atomic
and the dislocation levels. Emphasis is placed on the models and/or theories
that bridge the microscopic mechanisms and the general macroscopic proper-
ties successfully.

This book has 25 chapters and is divided into two parts. Part I (chapters
1-12) is devoted to high temperature deformation. The contents cover topics
about the macroscopic high temperature deformation behaviors of metals and
alloys; the development of the substructures during creep; the creep of pure
metals, solid solution alloys, particle strengthened alloys and intermetallic
compounds; diffusion creep; superplasticity and the multiaxial creep behav-
iors. Part II (chapters 13-25) covers high temperature fracture, where the
creep cavity nucleation and growth, the creep crack propagation, the evalua-
tion and prediction for creep damage and fracture, the creep-fatigue interac-
tions, and the high temperature environmental damage of materials are dis-
cussed.

The Chinese version of this book was intended to be a reference book for
our graduate students and young researchers, The motivation for publishing
this book is to facilitate young students and researchers to catch on quickly the
basic ideas of high temperature strength theories and the recent progresses.
Considering this we choose the most typical models proposed at each stage of
the development of high temperature strength theories. We present the theo-
retical framework of these models, rather than making comprehensive com-
ments on the huge amount of experimental data, whether they are supporting
or contradicting the theories. A comprehensive bibliography has not been at-
tempted in the Chinese version of this book, and the references quoted in the
English version are out of the same consideration.

The publication of the Chinese version of this book was financially sup-
ported by a science publishing fund of Chinese Academy of Sciences and by a
publishing fund of the Dalian government.

Prof. Shouyi Gao carefully reviewed the manuscript of the Chinese ver-
sion of the book. I appreciate his valuable comments and suggestions on it
My thanks are also due to my colleagues who have deeply involved in the Eng-
lish translation work. A non-exhaustive list would certainly include Dr. Ying-
min Wang, Dr, Hao Huang, Dr. Fumin Xu, Dr. Guoging Chen, Dr. Xi-
aopeng Zhu, Dr. Aimin Wu, Dr. Honggang Dong, Dr, Xiao Ren, Prof, Li-
angming Peng and Prof. Qing Zhou. 1 acknowledge the assistance of Prof.
Mingkai Lei, Prof. Yi Tan and Prof. Wenlong Zhou for the organization of
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the translation work, I am grateful to Dr. Weixing Chen at the University of
Alberta of Canada, and Dr. Yuyuan Zhao at the University of Liverpool of the
UK who revised Part I and Part II of the English version, respectively. With-
out the help of these colleagues and friends, the project would have never been
finalized.

I thank my wife, Qide Nan, for her patience and encouragement while I
am working on the book at weekends and holidays. Her faithful love was, and
still is a great source of confidence.

Finally, I would like to point out that 1 am responsible for all the errors
or deficiencies that should unavoidably remain in this book.

Jun-Shan ZHANG
Dalian
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1

Creep Behavior of Materials

1.1 Creep Curve

The time-dependent plastic deformation of materials under constant stress at
elevated temperature is called creep. In creep test, a constant load or a con-
stant stress is applied to the specimen and the change of strain is recorded as a
function of time. Figure 1.1 shows a typical creep curve schematically. As
can be seen, there are three stages of creep. In the first stage, called primary
creep, creep rate decreases with time. The second stage, called steady state
creep or secondary creep, is characterized by a constant creep rate. In the
third stage, called tertiary creep, creep rate increases with time, eventually
leading to fracture.

t

1. 1 Typical creep curve at constant stress.

This type of behavior can be explained by simultaneous occurrence of
strain hardening and dynamic recovery at elevated temperature. At the begin-
ning of creep, the deformation resistance is small and the strain rate is high.
In primary creep, strain hardening causes the creep rate to decrease with
strain, With increasing strain hardening, the rate of dynamic recovery is in-
creased. The steady state creep will be reached when the strain hardening is
balanced by the recovery softening. The tertiary creep, where creep rate in-
creases (or flow stress decreases) with time, is primarily attributed to local-
ized necking and also to the formation of creep cavities, Many commercial al-
loys. when tested in tensile creep, exhibit a large tertiary creep and no (or va-
ry short) secondary stage is observed. In such a case the minimum creep rate
is used to characterize creep properties. The absence of steady state creep is

3



4 High Temperature Deformation and Fracture of Materials

attributed to structural instability, for example particle coarsening and grain
growth,

If the material is tensioned at a constant strain rate and the change of
flow stress is recorded as a function of strain, then another type of deforma-
tion curve is obtained as shown in Fig. 1. 2, The constant strain rate deforma-
tion can also be divided into three stages. The flow stress increases with
strain in the first stage; remains constant in the second stage and decreases in
the third stage until fracture.

g

It I

t

1. 2 Typical deformation curve at constant strain rate.

The two types of creep test, constant-load (or constant-stress) and con-
stant-strain-rate creep, correspond to two engineering applications of materi-
als at high temperature; long term services of components at constant load
and hot processing at constant deformation rate, such as rolling, drawing and
forging.

1.2 Stress and Temperature Dependence of Creep Rate
1.2.1 Stress Dependence of Creep Rate

Extensive phenomenological creep studies on polycrystalline metals indicate
that the relationship between the steady state creep rate, ¢, and the applied
stress, o, is described by the power law:

e = Ao a.»
where A, is a constant associated with temperature and material, and » is the
stress exponent of creep rate, (From now on, the term “creep rate” will indi-
cate steady state, or minimum, creep rate if there is no special notation). The
value of n can be determined from the slope of loge~1logs plot of experimental
data at constant temperature. The value of n for pure metals in the intermedi-
ate stress range is usually equal to 5 (In the low-stress range diffusional creep
takes place and it will be discussed in Chapter 9). An example of this plot for
pure aluminium is shown in Fig. 1. 3%, It can also be seen from the figure
that the liner relationship between logé and logs (power law creep) in the in-
termediate stress range breaks down in the high stress range. This phenome-
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non is called power law breakdown (PLB). The stress dependence of creep
rate in the PLB range can be described by

¢ = A,exp(Bg) (1.2)
where A, and B are constants related to material and temperature.,

10~ T T T T T T T T

1 1 1 1 A 1 i
6 8 10 15 20 30
o/MPa

1. 3 Stress dependence of creep rate for pure aluminum £ .

L.
1.5 2 3 4

The stress dependence of creep rate in the intermediate and high stress
ranges can be described by the following unified equationt
£ = A; (sinhag)” 1.3
This equation reduces to Eq. (1. 1) at lower stress and to Eq. (1. 2) at higher
stress. It should be noted that Egs. (1. 1) and (1. 2) represent different creep
mechanisms. Therefore, Eq. (1. 3) does not have a physical meaning although
it is convenient for mathematical treatment of creep over a wide range of
stress,

1.2.2 Temperature Dependence of Creep Rate

The creep rate can be described by an Arrhenius equation,
%)

» RT

where Q, is the activation energy for creep, A, is a constant for a given stress,
R is the gas constant and T is the absolute temperature. This equation indi-
cates that creep is a thermally activated process. Figure 1. 4 shows logg~1/T
plots of the creep data within the range of power law creep in Fig. 1. 1Y, The
activation energy for creep for a given stress can be determined from the slope
of the straight line for the stress in Fig. 1. 4. The almost identical slopes of
the lines for different stresses indicate that the activation energy for creep is
independent of stress in certain stress range.

é =A4exp(— 1.4

Since the dislocation substructure in the steady-state creep stage depends
on the modulus-normalized stress but not on temperature, the activation ener-



