Electromagnetic Wave
Propagation in Turbulence

Evaluation and Application of Mellin Transforms

SECOND EDITION

Richard J. Sasiela



Electromagnetic Wave
Propagation in Turbulence

Evaluation and Application of Mellin Transforms

SECOND EDITION

Richard J. Sasiela



Library of Congress Cataloging-in-Publication Data

Sasiela, Richard J., 1940-2007
Electromagnetic wave propagation in turbulence : evaluation and application of Mellin transforms /
Richard J. Sasiela. -- 2nd ed.
p. cm.

Includes index.

ISBN 978-0-8194-6728-7

1. Electromagnetic waves--Transmission. 2. Atmospheric turbulence. 3. Mellin transform. 4. Numerical
calculations. I. Title.

QC665.T7S27 2007
539.2--dc22
2007004557

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10

Bellingham, Washington 98227-0010 USA

Phone: 360.676.3290

Fax: 360.647.1445

Email: spie@spie.org

WWWw.spie.org

Copyright © 2007 The Society of Photo-Optical Instrumentation Engineers
All rights reserved. No part of this publication may be reproduced or distributed
in any form or by any means without written permission of the publisher.

Printed in the United States of America.

The content of this book reflects the thought of the author(s). Every effort has been
made to publish reliable and accurate information herein, but the publisher is not
responsible for the validity of the information or for any outcomes resulting from
reliance thereon.

K] sPiE

Cover photo: provided with permission of Lincoln Laboratory, Massachusetts Institute of Technology



Electromagnetic Wave
Propagation in Turbulence

Evaluation and Application of Mellin Transforms

SECOND EDITION



To my wife Joan whose love and support has meant so much




Preface to the first edition

This book is directed at two audiences: those interested in problems of elec-
tromagnetic wave propagation in turbulence and those interested in evaluating
integrals. For the first group, the text provides a systematic way to obtain an-
alytic answers to problems in which the scintillation is small and there are no
nonlinear effects due to high optical powers. For those interested in evaluat-
ing integrals, the integration method is explained in separate chapters. In the
chapters containing examples of wave propagation in turbulence, the problem is
quickly reduced to one of evaluating an integral, and can be viewed as examples
of the integration technique.

To address these two audiences, this book develops a systematic way of ex-
pressing solutions to problems of electromagnetic wave propagation in turbulence
in integral form. It also develops Mellin transform techniques that are used to
evaluate these integrals. This technique has three major advantages over oth-
ers: 1) it is applicable to a wide range of problems; 2) the application of the
technique is straightforward; and 3) the answers are expressed in analytic form.
Mellin transform and hypergeometric functions have been a scientific backwater
and are used regularly by only a few people. That is a shame for several rea-
sons. Mellin transforms allow a deeper understanding of infinite series. Knowing
the Mellin transform of a function is tantamount to knowing its infinite series.
Mellin transform techniques, which require an understanding of hypergeomet-
ric functions. enable one to deepen his or her understanding of elementary and
transcendental functions. In addition to this pedantic usefulness, it is a natural
way to solve several types of problems that have wide applicability. For instance,
Mellin transforms permit one to perform integrations that are very difficult to
perform by other means. They enable one to solve boundary value problems in
spherical and cylindrical coordinates with the same ease that Fourier transform
techniques afford in solving differential equations with constant coefficients. The
self-similar characteristic of Mellin transforms leads to applications in image,
radar and acoustic processing, and chaos and fractal theory.

The major part of this book develops and applies a method for evaluating
integrals analytically and expressing the result either as infinite series or as
a sum of generalized hypergeometric functions. At first look, the method to
evaluate integrals is formidable, and the final results look very complicated. It
has been suggested that results from a numerical integration can be obtained
more quickly. One has to overcome these prejudices. It is true that the formalism
is difficult to learn because it uses mathematical techniques that are generally
unfamiliar to most scientists, but that was not a valid excuse for not learning
other difficult techniques, which are part of a standard scientific education. If
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the formalism produces results that are useful, one should be willing to overcome
the initial difficulty.

This technique has indeed proved to be very useful! The expressions for the
power series, although lengthy to write down, are easily and quickly evaluated
using the recursion relation for gamma functions. Recently several computer al-
gebra programs have acquired the ability to evaluate generalized hypergeometric
functions, to which the power series are equivalent. In this context the results
are no more difficult to evaluate and plot for specific cases than results expressed
in terms of more familiar functions such as sinusoids and exponentials. The ana-
lytic form of the answer uncovers the natural parameters of a problem and gives
one insight into how important a parameter is — an insight that is difficult to
develop with numerical techniques. Integrands that contain the difference of two
almost equal quantities, a condition that leads to difficulties in numerical inte-
gration, are handled in the complex plane by simply deforming an integration
path past a pole. Because the technique is algorithmically based, one can de-
velop a computer algebra program that automatically evaluates these integrals.
in which case the user would not need to learn the details of the technique to
get an analytic answer and to generate curves for specific ranges of parameter
values. The development of such a program is being investigated. Just as scien-
tific calculators made tables of trigonometric functions and logarithms obsolete,
such a computer program would do the same to most material in integral tables.
It would also allow one to evaluate many integrals that are not in the integral
tables.

This technique was originally developed to evaluate integrals one encounters
when solving problems of electromagnetic wave propagation in turbulence. The
technique enables one to solve problems in terms of integrals that are generated
with filter functions that multiply the turbulence spectrum. Problems that take
days to solve when one starts from first principles can often be solved in less
than an hour with appropriate filter functions and Mellin transform techniques.

The techniques given in this book were developed over several years in the
high-energy beam-control and propagation group at MIT Lincoln Laboratory.
I would like to thank MIT Lincoln Laboratory for providing the opportunity
to work on challenging problems for which this technique was developed. for
the freedom to pursue research in this area, and for the chance to interact with
people interested in helping to develop this technique. This work was sponsored
by the Strategic Defense Initiative through the Department of the Air Force
under Contract No. F19628-90-C-0002.

I chose to solve many of the problems to illustrate the method developed in
this book. I did not do a comprehensive literature search to see if these problems
were previously solved. I apologize if 1 have left out relevant references.

Several people provided ideas that enabled me to develop the technique. Lee
Bradley first suggested the possible usefulness of Mellin transform techniques
and the existence of the Marichev text. He also suggested the use of Gegenbauer
polynomials in addressing the anisoplanatism problem. The technique of eval-
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uating integrals in several complex planes was developed in collaboration with
John Shelton.

Many people had a hand in suggesting what material to include, and how it
should be organized. I would like to especially thank Jonathan Shonfeld for care-
fully reading the first draft and suggesting many organizational changes. I have
had many suggestions from Robert Kramer, Hernan Praddaude, Ronald Parenti,
and Charles Primmerman. Fred Knight was very helpful in converting the text
into BTEX. Jim Eggert was particularly helpful since he was willing to read the
text during several stages of the evolution of this book and made many useful
suggestions. The series editor Professor Hermann Haus and the Springer-Verlag
editor Helmut Lotsch made helpful suggestions on how the material should be
presented. I want to thank Bill Breen, Ed Sullivan, Dave Tuells, Kevin Walsh,
and their staff for producing the figures, converting them into Postscript, and
printing the final copy. Sue Richardson and Katharine Krozel provided useful
editorial help.

A book like this that contains so much new material and has so many com-
plicated equations is very difficult to make error free. I would appreciate hearing
any comments you have on the material or errors you have found in the text.
My E-mail address is Sasiela@ll.mit.edu.

Writing a book takes a tremendous investment in time and energy that is no
longer available for home life. I thank my wife Joan for being so understanding
during this period.

October, 1993 Richard Sasiela
Lexington, Massachusetts

Comments about the second edition:

The first edition was published by Springer-Verlag. This edition corrects ty-
pographical errors in that edition. The treatment of tilt of uncollimated beams
was incorrect in Sections 4.5, and 4.6 because a y that should have multiplied the
diameter was missing. It was pointed out by Jan Herrmann that it was necessary
to use the local tilt in these sections.

As pointed out by Byron Zollars, there were some internal inconsistencies
with 27 factors in the development of the general formula for variance due to
turbulence. This affected some intermediate formulas in Chapters 2 and 3.

Since the propagation of focused beams has become more important, this
case has been treated more carefully and extensively.

The derivation of the basic equations for variance and the removal of Zernike
terms is developed more carefully.

Many problems can be solved by using the filter functions for variance. For
more complicated problems one needs to start with the filter functions for phase
or log-amplitude and develop the variance filter functions from these. Several
examples on how to do this are illustrated.
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Computer algebra programs have become more powerful and many of the
integrals can now be solved with these programs. Solving these problems by
hand is time consuming and error prone. Having these programs to do this part
of the analysis is very helpful.

Typically, one is interested in the Strehl ratio. Analytic solutions are obtained
for the variances. The approximations for the Strehl ratio using the phase vari-
ance do not give accurate results for many cases of interest. The use of filter
functions in the structure function is elaborated in this edition. The problem
of finding the Strehl ratio when the structure function is a function of aperture
position is addressed. Examples of solving for the Strehl ratio numerically are
given.

Chapter 6 of the original book discussed other uses for Mellin transforms.
This chapter was not needed for the development of the subsequent chapters.
Since [ have nothing new to add on this subject, the chapter was eliminated
because of the additional topics that were addressed.

I want to thank Ronald Parenti who I have worked with on turbulence prob-
lems for over 30 years. Our recent collaboration with Professors Larry Andrews
and Ronald Philips has been very productive.

Recent computer code results indicate that the calculation of the scintillation
for finite beams based on Rytov theory is in error. The beam wave theory predicts
a dip in the scintillation index for Fresnel number around unity. Code results
predict a smaller dip. Apparently, the perturbation theory that starts with a
diffraction-limited beam on axis is incorrect. In the region of error the tilt can
be comparable to the beam diameter. In addition. the focus term caused by
turbulence causes a change in beam size, which violates the diffraction-limited
assumption. Various authors have corrected the Rytov scintillation by separately
including the effects of jitter and beam spreading.

I want to thank Seth Trotz for solving the many problems encountered in
converting this document into ETEX 2:. Also, | want to thank Eric P. Magee
and his students for pointing out errors in the draft copy of this edition.

Beth Huetter of SPIE helped to correct errors and produce a uniform format.

This work was sponsored by the Department of the Air Force under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions. and recom-
mendations are those of the author and are not necessarily endorsed by the
United States Government.

February, 2007 Richard Sasiela
Lexington, Massachusetts
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ko 27 /A, wavenumber
k. Propagation vector along propagation direction
K(a) Modulation transfer function of a circular aperture
K, (z) Modified Bessel function of the third kind
L End point of propagation path
L; Inner scale with definition L; = 27 /k;
L, Inner scale with definition L;, = 5.92/k;
L, Outer scale
n(r) Variation of air density with position
P(v,k,2) Diffraction parameter
To Coherence diameter of a plane wave
Ty Coherence diameter of a spherical wave
R, Radius of curvature of beam wave at the source
S, Sp, t Complex variables
S(prs---, Dr) % %o: %
ni=pi =Pk .
Se(w) Power spectral density of phase
Sy (w) Power spectral density of log-amplitude
SR Strehl ratio
t Time or second complex variable
u, Unit vector in propagation direction
U (z) Heaviside unit step function
Uy, n'™ velocity moment of turbulence
Vg Wind ground speed
v(h) Wind speed as a function of height
W, 1/e?* radius of beam wave
Z(m,n) Zernike polynomial
a(h) Normalized atmospheric density versus altitude
ol Propagation parameter
I' [z] Gamma function
dx —a) Dirac delta function
Ang Difference of refractive index between two colors
0, [soplanatic angle
ty Characteristic source angle for scintillation reduction
0, Angle subtended by a finite source
K Transverse wavenumber
Ki Wavenumber of inner scale

Ko Wavenumber of outer scale
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A Wavelength

Wiz m'™ turbulence moment

wt m' upper turbulence moment

i, m'™" lower turbulence moment

v (k,z) Fourier transform of refractive index variations
p Two-dimensional transverse spatial vector

T Time delay between measurement and correction

@ (p,z) Phase variation due to turbulence

@R (p, z) Phase related quantity

&y (p, z) Total variation of the turbulence fluctuations
P Psi or digamma function

X (p,z) Log amplitude due to turbulence

YR (p, z) Log-amplitude related quantity

w Radian frequency of turbulence variation
C(s) Riemann zeta function
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Chapter 1

Introduction

Solving problems of wave propagation in turbulence is a field that occupies the
services of a small group of researchers. The methods used in this community
and the results obtained are not generally known by researchers in other commu-
nities. The main reason is that the field is considered difficult, and if there is not
an obvious need to investigate the effects of turbulence, they are neglected. The
difficulty arises from the need to solve stochastic differential equations. Advances
made by Tatarski and Rytov reduce problems to multiple integrals. These inte-
grals are often difficult to evaluate since fractional exponents of functions appear
in integrands. The final step in most cases is to evaluate these integrals numer-
ically and to present the results as parametric curves. Many cases are run to
develop some insight into how a quantity of interest varies with parameters. Be-
coming an expert in this field requires a great deal of time to become familiar
with these graphical results so that one has some insight into various effects.

As pointed out above, there is a formalism for reducing a problem to quadra-
tures. This process is lengthy, and there are several ways of doing it. Different
workers use different methods to get at the same result. This makes it difficult
for the novice to understand the literature and to realize that there is some
underlying order. This discourages a person with only a casual interest from
developing a facility in this field. It was to make the solution of these problems
more algorithmic that the methods expounded in this book were developed.

In this book I use the Rytov approximation to reduce a very general problem
to a triple integral. I develop techniques that allow one to evaluate these integrals
analytically.

The integrals that one encounters contain products of functions of which one
or more is a Bessel function. Workers in the field look for these integrals in inte-
gral tables, and if unsuccessful, resort to numerical analysis. Even numerically,
some of these integrals are difficult to evaluate. The integrand is often either the
product of a function that goes to infinity multiplied by one that goes to zero at
one of the integration limits. or the difference of two functions that each lead to
a divergent integral. Great care must be exercised in evaluating these integrals.

The techniques developed in this book provide a recipe for obtaining analyt-
ical solutions. There is a saying, “You don't get something for nothing.” Indeed,
there is a price to be paid for being able to solve these problems more easily: The



