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CHAPTER 1
THE THEORY OF DIVISIBILITY

§ 1. Fundamental concepts and theorems.

A. The theory of numbers is concerned with the study of the
properties of integers (or whole numbers). By integers we under-
stand not only the natural numbers 1,2,3,... (positive integers),
but also zero and the negative integers —1, —2, —3, .. ..

In the text the italic letters will always denote integers, unless
otherwise stated. ‘

The sum, the difference, and the product of two integers, is also
an integer, but their ratio may, or may not, be an integer.

B. If the ratio of two integers @ and b is an integer ¢, we have
a = by, ie., a is a product of b, and an integer. We can then say
that a is divisible by b, or that b divides a. In this case a is a multiple
of b, and b is a divisor of a. We shall write bla, to denote that b
divides a.

The following two theorems hold.

1. If a is a multiple of m, and m is a multiple of b, then a is a
multiple of b. ‘

In fact, from a=aym, m= myb, it follows that a = a;m:b,
where a,m, is an integer, which proves the theorem.

2. If in an equality of the form

k+l+.. .. +n=p+qg+...4s
Jor all the terms except one, it is found that they are multiples of b,
then the remaining term is also a multiple of b. In fact, if we let &
be the term in question, we have

l=llb,...,n=nlb,p=plb,q=qlb,...,s=slb,
k=p4+qg+...4+8—1—... —p=
=@ita+.. -l —...—nh,

which proves the theorem.
C. In general the following theorem holds. Every integer a can
be uniguely expressed in terms of a positive integer b in the form
a=bg+r;, 0<r<i
The theorem includes the particular case when a is divisible by b.
1



2 THE THEORY OF NUMBERS

In fact, one representation of @ in this form is obtained by taking
bq equal to the greatest multiple of b not exceeding a. Suppose now
that @ = bg; + r, 0 <7, < b is another such representation, we
get 0 =b(q — ¢q;) + 7 — r, from which follows (2, B) that r — r,
is a multiple of b. But, since |r — ry| < b, the latter is possible
only if »r — r; = 0, i.e., if r = », from which also follows ¢ = ¢;.

Integer g¢.is called the quotient, and a the remainder of the division
a by b.

Example. Let b = 14. We have

177 =14 .12 + 9; S 0<9<l4
—64 = 14.(—5) + 6; 0<6 <14
164 = 14 .11 + O; 0=0<14

§ 2. The greatest common divisor.

A. Below we shall consider only the positive divisors of integers.
Every integer which divides simultaneously the integers a, b, ..., 1
is their common divisor. The greatest amongst these common
divisors is called the greatest common divisor and denoted by symbol
(a, b, ...,1). The greatest common divisor of several finite integers
evidently exists since these integers have only a finite number of
common divisors. If (a,b,...,l)=1, thena, b, ..., are called
relatively prime. If every number out of a, b, . . ., is relatively
prime to every other of them, then a, b, . . ., I are called relatively
prime in pairs. Evidently, the integers which are relatively prime
in pairs are also relatively prime. In the case of two integers, the

- terms ‘‘relatively prime,” and “relatively prime in pairs,” coincide.

Example. Integers 6, 10, 15 are relatively prime, since (6, 10, 15) =
Integers 8, 13, 21 are relatively prime in pairs, since (8, 13) = (8, 21) =
(13, 21) = 1.

B. We must first consider the common divisor of two numbers.

1. If a i3 a multiple of b, then the set of all common divisors of
the numbers a and b coincides with the set of all divisors of b. In
particular (a, b) = b.

In fact, every common divisor of the integers-a and b is also a
divisor of b. On the other hand, since a is a multiple of b, it follows
(1, B, § 1) that every divisor of b is also a divisor of a, i.e., it is a
common divisor of b and a. Thus, the set of all common divisors
of the integers a and b coincides with the set of all divisors of b,
and since the greatest divisor of b is b itself, it follows that
(a, b) =10.



THE THEORY OF DIVISIBILITY 3

2. If
a=0bg+ ¢
then the set of all common divisors of a and b coincides with the set
of all common divisors of b and c, in particular (a, b) = (b, c).
~ For, from the equality above, it follows that every common
divisor of the integers a and b also divides the integer ¢ (2, B, § 1)
and, consequently, is a common divisor of b and c.

On the other hgnd, the same equality shows that every common
divisor of the integers b and ¢ divides @, and consequently is a
common divisor of the integers a and b.

Therefore, the common divisors of integers a and b coincide with
the common divisors of integers b and c.

In particular, their greatest common divisors coincide, i.e.,
(@, b) = (b, c).

C. The greatest common divisor of two integers can be found by
means of the Euclidean Algorithm. The latter can be described
as follows. Let a and b be positive integers. From G, § 1, we find
the sequence of equalities

a=bq, + 1, 0<ry,<b, )
b=ryq, + 175 0<rg<ry,
Ty = T3q3 + Ty, 0<ry<rs,

Tpo = rn—lqn-—l + Tn 0 = Tn < rn—l’

Tn—1= TnQn ¢
This sequence leads ultimately to a remainder 7, ; which is zero,
since b, 7y, 73, . . . is a monotonically decreasing sequence of integers,

and cannot contain more than b positive terms.

D. Considering the above equalities (1) in turn, starting from
the top, we find (B) that the common divisors of the integers @ and
b are the same as the common divisors of the integers b and r,, and
further are the same as the common divisors of the integers r, and
rq, integers r; and r,, . . ., integers r,_, and r,, and finally are the
same as the divisors of the integer r,.

At the same time we have

(@, B)=(b, 1) = (T Tg) = s« o = Ty _15 Tp) = Tps

From the above reasoning it follows that
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1. The set of all common divisors of integers a and b coincides with
the set of all divisors of their greatest common divisor.

2. This greatest common divisor is equal to r,, .., to the last
non-zero remainder of the Euclidean Algorithm.

Example. Applying the Euclidean Algorithm in order to find the
greatest common divisor (525,231) we have

231 | 525 525 = 231.2 + 63
2| 462 231 = 63 .3 + 42
63| 231 63 =42.1+ 21
3|189 42 = 21.2

42| 63

1|42
21 | 42
-2*42

Here the last positive remainder is r, = 21. Hence (525,231) = 21.

E. 1.
(am, bm) = (a, b)m,
where m denotes any positive integer.
2. If 0 denotes a common divisor of integers a and b, we have

ab (a,d) . . ( a b )_
(6 6) T, mpartwular, UTI;—)’(TZ,—I)) =

In fact, multiplying each term of the equalities (1) by m, we
obtain new equalities, in which a, b, ry, ..., r, are replaced by
am, bm, rym, . . ., r,m and therefore (am, bm) = r,m, which proves
the first statement.

Further, applying 1 to

a b a b
(@ b) = (a a")=(a"3)";

we obtain the second theorem.

F. 1. If (a, b) = 1, then (ac, b) = (c, b).

In fact, (ac, b) divides ac and bc, and hence (1,D) it divides
(ac, be), which by 1, E is equal to ¢. But (ac, b) divides b, and thus,
it divides (c, ). Conversely, (c, b) divides ac and b, and conse-
quently it divides (ac, b). Thus, (ac, b) and (c, b) divide each other,
and are therefore equal.

2. If (a, b) = 1, and ac is a multiple of b, then ¢ is a multiple of h.

In fact, since (a, b) = 1, we have (ac, b) = (¢, b). But sincc ac is
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a multiple of b, then from (1, B) we have (ac, b) = b. Consequently
(c, b) = b, i.e., ¢ is a multiple of b.

3. If every integer ay, ay, . . ., a,, 18 relatively prime to every one
of the integers b, by, . . ., b, then the product a,a,, . . .a,, is relatively
prime to the product bb, . . . b,.

We have (Theorem 1)

(a;a585 . . . @y, by) = (agay . . . @, b,) =

=(ag...0,0)=...= (a,, b)) =1.
Denoting a,a, . . . a,, by A, we similarly obtain
(bybgdg . . . b, A) = (bgdg...b,, 4)=
=(bg...0,,4)=...=(b,, 4)= 1.

G. The problem of finding the greatest common divisor of several
integers is solved by reducing it to that for two integers. Namely,
in order to find the greatest common divisor of integers a,, a,, . . . , a,,
we form a sequence

(ay, Gg) = dy, (dy, 8g) = o (dg, ag) = dy, . . ., (dy; @,) = d,.

Thus the integer d,, is the greatest common divisor of a,, a,, . . . , a,.

In fact, (1, D) the common divisors of integers a, and a, are the
same as those of d,; consequently, the common divisors of a,, a,,
and ag are the same as those of d, and ay, i.e., are the same as the
divisors of d3. Further, we find that the common divisors of integers
a,, @y, ag, a4 are the same as the divisors of d,, etc. Finally, the
common divisors of a,, ay, . . . , @, are the same as the divisors of d,.
But the greatest divisor of d,, is d, itself, therefore it is the greatest
comman divisor of the numbers a,, a,, . . ., a,.

It is clear from the reasoning above, that for the greatest common
divisor of more than two integers, theorem 1, D, is still true. The
Theorem 1, E, and 2, E, are also true, because multiplication by m
or division by J of all the integers a,, a,, . . ., @, implies that all the
integers d,, d,, . . ., d,, are, respectively, multiplied by m, or divided
by 4.

§ 3. The least common multiple.

A. Every integer, which is a multiple of each of the given integers
is called the common multiple of these integers. The least positive
common multiple is called the least common multiple.
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B. We must first find a general expression for a common multiple
of two integers. Let M be any common positive multiple of the
integers @ and b. Since it is a multiple of a, we have M = ak where

k is an integer. But M is also a multiple of b, and therefore %c is
an integer, which, taking (a,b) =d, a =ad, b= bd, can be
written as al;—lk-, where (a,, b;) = 1, (2, E, §2). Therefore (2, F, § 2)
kisa multipie of b;, k = b,t, where ¢ is an integer. It follows that

ML
d

Conversely, it is obvious that every M of the above form is a
multiple of both @ and b. Therefore the form is a general expression
for all common multiples of @ and b.

We find the least positive of these multiples by putting ¢ = 1,

ab
m= —,
d
which consequently will be the least common multiple. Introducing
m into the expression of M, we have

M = mt.

The last two expressions lead to a theorem

1. The common multiples of two integers are the multiples of their
least common multiple.

2. The least common multiple of two integers is equal to their
product, divided by their greatest common divisor.

C. Consider the least common multiple of several integers
@y, Gy, . . ., @,. Denoting by [a, b] the least common multiple of
integers a and b, we form a sequence of integers

[ay, ag] = my, [my, ag] = mg, ..., [m, 4, a,]=m,.

The integer m, obtained in such a way, will be the least common
multiple of a,, a,, . . . , a,.

In fact, (1, B), the common multiples of integers a, and a,, are the
multiples of m,, hence the common multiples of integers a,, a,, and
a, are the same as the common multiples of m, and ay, i.e., as the
multiples of m,. Further we find that the common multiples of

Py
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ay, Gy, @3, @, coincide with the multiples of m,, and so on; and,

finally, that the common multiples of a,, a,, . . ., a, are the same
as those of m,. But since the least multiple of m,, is m,, itself, m,
is the least common multiple of ay, ay, . . . , @,.

From the above reasoning it is clear that the theorem 1, B holds
in the case of more than two integers. Moreover, it shows that the
following theorem is true:

The least common multiple of pairwise prime numbers is equal to
their product.

§ 4. The Euclidean Algorithm and continued fractions.

A. Let « be any real number. Denoting by ¢, the greatest integer,
which does not exceed «, we have

1
a=ql+;-2; oy > 1.

Similarly, for non-integral «,, . . ., &,_;, We find

\ 1
“2=Q2+£; a3>1;

1
xRy 1 = @5 T ;; oy > 1,

]

from which we obtain the following development of o into a continued
fraction:

1
«=¢ + 1
Qs+ —————
‘ 93 + -
L m
’ 1
95 + —
a‘s
If « is irrational, then the set a, «y, . . . does not contain integers,

and the above process can be infinitely extended.
In the case when o is rational, as we shall see in (B), the set

&, d, . - . Necessarily contains an integer and the process is a finite
one.
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a
B. If « is an irreducible rational fraction o = B then the develop-

ment of « into a continued fraction is closely connected with the
Euclidean Algorithm. In fact, we have,

a 7
a=bgy + ry; '5=91+?2’
b .
b= rygy + 13 =6t
2 2
s Ty
To="1y5 + 74; ;‘=93'|';—,
3 3
r r
Tn2 = Tp1qn—y + T} ;‘"—2 = Qp-1+ - -,
n—1 n—1
L OO
rn—l = 1’," 'n; ':—1 = qn’
n
which gives
a n 1
74 L1
q —
: 93+ -
: 1
-
9n

C. The integers ¢,, q,, . . . in the development of « into a continued
fraction, are called quotients, the fractions

1

1
=g, Sh=q+— &=q+ T’
95
9 + —
Ve
are celled convergents to a.
D. We can easily find a simple law for the formation of conver-

gents if we note that 8, (s > 1) can be obtained from 0,4 by re-
. 1
placing ¢, , by ¢, ; + ",
8
In fact, assuming Py = 1, @, = 0, we can successively represent
A
all the convergents in the following form (here the equality B= I—J—"’

denotes that 4 represents the symbol P,, and B represents symbol
Q)
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1.
@+ —

a=8_b s __ &_gm+tl_ ah+P P
! @’ ‘ 1 @-1+0 @ +Q @
1
+1)p4p
6=(!12 %/ ! °=QaPz+P1=5,
: BP+@ @

1
(43 + "') Q@+ @
93
etc., and in general
- QsP 8—1 + P —32
! qus-—l + Q,—z

Therefore, the numerators and denominators of convergents can
be successively evaluated by the formulae

P,=¢qP,,+ P,, } )
Ql = QaQa—l + Qo——2
For these calculations the following table is useful
g, q|a|--- g |--- 2
Py 1 | g | P|...|Py|Py| Py |...|Pay| &
Qa 0 1 Qz c Qn-s Qo—-l Q, Sl Q’l—l b
: . 1056
Ezxample. Let us express as a continued fraction the number TR
Here
38| 1056 105 24 1
2| 76 38 1+ 1
29 | 38 34 1
1|29 44 1
929 %4
3|27
219
418
]2
212
and the above table gives
2 2 [ 1 3 4 1 2
P, 1 2 3 11 47 58 163

Q | o | 1| 1| 4| 17| 21| b
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E. Consider the difference 8, — 8, ; of two subsequent con-
vergents. For s > 1 we find,

h
8, — 0 =—— ="
' ! Qs Qs—l Qst—].

where h,= P,Q, ; — Q,P,;. Substituting for P, and @, their

expressions (2) and simplifying, we obtain h, = —k, ;. The latter;
combined with b, = ¢; .0 — 1.1 = —1, gives h, = (—1)".
Hence

PRy —QFs= (—1y (s>0) (3)

(—=1)

R . 2

8 8—1 Q;QB_]_

Example. In the table of the example given in D, we have

105.11 — 38.41 = (—1)8= —1.

(8>1). 4)

F. Tt follows from (3) that (P, @,) is a divisor of the number
(=1)*= +1, (2,B,§1). Therefore (P, Q)=1, ie., the con-

P
vergents — are irreducible fractions.
8

G. Consider the sign of the difference §, — afor  #« (i.e., exclud-
ing the case when, for a rational «, d, is its last convergent).
Evidently 6, is obtained by changing «, into g, in (1). But, as it is
evident from A, after such a change

o, will decrease
o,y will increase

o,_o Will decrease

for odd s will decrease

for even s will increase.

Therefore 6, — « << 0 for odd s and 6, — « > 0 for even s, and
consequently the sign of §, — « is that of (—1)°.
H. We have

1
|« —dml<gor

In fact, for 8, = a the statement (with equality sign) follows
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from (4). For 8, # « it follows (with inequality sign) from (4), and
from the fact that, by G, , — a« and 8, , — « have opposite signs.

§ 5. Prime numbers.

A. The number 1 has only one divisor, namely 1. In this respect
the number 1 is different from all the other integers.

Every integer greater than 1, has at least two divisors, namely 1
and itself; if these are all divisors of an integer, it is called a prime
integer. An integer > 1, which has divisors other than 1 and itself,
is called a composite integer.

B. The least divisor, distinct from 1, of an mteger greater than 1,
s prime.

In fact, let ¢ be the least divisor of an 1nteger a>1, and let ¢
be distinet from 1. If ¢ were a composite number, it would have
some divisor gy, satisfying 1 < ¢; < ¢; but then a, being a multiple
of g, is a multiple of ¢, (1, B, § 1) which contradicts the hypothesis
that g is the least divisor of a.

C. The least divisor, distinct from 1 (which according to B is prime),
of a composite number a, does not exceed a.

For, let ¢ be such a divisor, then a = ga,, a, = ¢, which on
multiplication, term by term, and dividing by a,, gives

>¢, g¢<Va

D. The number of primes is snfinitely large. The truth of this
theorem follows from the fact that for any set of distinct primes

Dy Dy - - -, D there exists a new prime distinct from those in
the set. Such will be a prime divisor of the sum
P1Pe - - P+ 1

which, since it divides all the sum, cannot coincide with any of
the primes p;, p,, . .., ps. (2, B, §1.)

E. To form the table of prime numbers not exceeding a given
integer N, there exists a simple method, which is called “The Sieve
of Erathosphenes.” It can be described as follows.

We write down the integers in their natural order

L2...,N 1)
The first integer distinct from 1 in this sequence is 2; it has
divisors 1 and 2, and no more, and thus is prime.

We delete (as composite) from (1) all the integers which are
multiples of 2, except 2 itself. The first of the remaining numbers
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will be 3. It is not a multiple of 2 (for otherwise it would have
been deleted), consequently 3 has divisors 1 and itself and no
others, thus it is also prime.

We now delete from (1) all the integers which are multiples of 3,
except 3 itself. The first remaining integer is 5. It is not divisible
by 2, or 3 (for then it would have been deleted), hence it has divisors
1 and itself, and also is prime.

Continuing this process we shall obtain more and more distinct
prime numbers.

We note that if we have eliminated by the described method
all the integers, which are multiples of primes less than p, then
all non-eliminated integers, less than p2, are prime. For then,
every composite integer » < p? has been deleted from the table,

being a multiple of the least prime divisor of n, which is < Vn < p.

Corollaries

1. Eliminating the multiples of a prime p, start from p2.
2. The table of primes < N is completed, after we have eliminated
all the integers which are multiples of the primes, less than, or

equal to, VN,

§ 6. Uniqueness of factorization into prime factors.

A. Every integer a is either relatively prime to a given prime p,
or it 18 divisible by p.

In fact, (a, p), since it is a divisor of p, can be either 1 or p. In
the first case a is relatively prime to p, in the second a is a multiple
of p.

B. If a product of several factors is a multiple of p, then at least
ome of the factors is divisible by p.

For, by A, each factor is either prime to p, or it is a multiple of p.
If all the factors were relatively prime to p, then their product
(3, F, § 2) would be relatively prime to p; therefore at least one
of the factors must be a multiple of p.

C. Every integer greater than 1, factorizes uniquely into prime
Jactors, if the order of the factors is not taken into consideration.t

In fact, let a be an integer greater than 1. Denoting by p, its
smallest prime factor, we have ¢ = ?2y. If a; > 1, then, denoting
by p, its least prime divisor, we have a, = p,a,. If a, > 1, then

t Fundamental theorem of arithmetic.



