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FOREWORD

The present textbook is based upon lectures given by the authors at Helsinki
University and at the University of Ziirich, and is a translation of the German
edition, Einfiihrung in die Funktionentheorie, published by Birkhiduser Verlag,
Basel, in 1964.

It is assumed that the reader is acquainted with analytic geometry and the
calculus, so that this introduction to the theory of functions may be begun in
the third or fourth year of undergraduate study in college.

As the Table of Contents indicates, the present volume is limited to the
presentation of the elements of the theory of functions, and the authors have
attempted to make the material both comprehensible and precise. Among the
sections in which this volume deviates more or less from other presentations
we must mention the following: the introduction of the complex numbers,
the concept of homotopy and its application, the integral theorems, the theory
and application of harmonic functions, in particular harmonic measure, and
the correspondence of boundaries under conformal mapping.

Exercises have been placed at the end of each chapter, and all 320 of these
exercises should be solved by the student for better insight into the subject
matter, whether he learns the subject through lectures or by self-study.

In introducing the elementary functions (Chapters 2-7) we have followed
in many places the presentation given by Ernst Lindeldf in his Finnish text-
book, Johdatus funktioteoriaan (introduction to the theory of functions). This
is particularly true for a considerable number of the exercises of these chapters.

We have received assistance in our work from various sources. First we
owe thanks to Dr. G. S. Goodman and Dr. T. Kvari for the effort and interest
which they have put into the translation of the book. We also express our
appreciation to Addison-Wesley Publishing Company and, in particular, to
Professor A. J. Lohwater for the valuable advice and generous assistance
which he has given in the editing of this edition.

Helsinki, September, 1968 Rolf Nevanlinna
V. Paatero
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CHAPTER 1

THE CONCEPT OF
AN ANALYTIC FUNCTION

The theory of functions is concerned with complex-valued functions of a
complex variable. Our study is confined to those functions which are
differentiable in a sense which will be made precise later on; such functions
are known as analytic functions. In order to create a basis for the theory, we
begin by introducing the complex numbers in a manner which will lead us
naturally to their interpretation as vectors in the plane.

§1. THE COMPLEX NUMBERS

1.1. Two-dimensional Vector Spaces
We begin by stating the axioms for a two-dimensional vector space over the
real numbers.
Let there be given a set R, whose elements a, b, .. ., x, y, ... shall be
called points or vectors, satisfying the following conditions.
I. To every two elements a, b € R there corresponds an element ¢ € R,
known as their sum and written ¢ = a + b, obeying the following rules:
I.1. a + b = b + a (the commutative law).
1.2. a+ (b + ¢) = (a + b) + ¢ (the associative law).
I.3. There is a zero in R, denoted x = 0, with the property that
a+ 0 =aforeverya € R.
1.4. Theequationa + x =bhas one and only one solution,x =b—ac R.
II. To every vector a and every real number A there corresponds a vector
b = Aa € R, known as their product, and obeying the following rules.
ILi. Xpa) = (Aw)a (A, p real numbers).
I1.2. (A + p)a = Aa + pa, Na + b) = Aa + Ab (the distributive law).
11.3. la=a.
II.4. The product Aa vanishes if and only if A = 0, or @ = 0, or both
A=0anda = 0.7
I1.5. The axiom of dimension: there exist two vectors aand bin R which
are linearly independent, that is, for which the equation

1 We shall use the symbol O for the number zero as well as for the vector zero without,
we trust, provoking any confusion.
1



2 THE CONCEPT OF AN ANALYTIC FUNCTION §1

Aa + pb = 0 has only the solution A = u = 0, but every three
vectors a, b, ¢ in R are linearly dependent, that is, the equation
Aa + ub + ve = 0 always has a solution such that at least one of
the three numbers A, u, v does not vanish.

This axiom asserts that the dimension of the vector space R is equal to
two. In the resulting ‘““affine plane” every vector x admits a representation in
terms of its coordinates in a two-dimensional reference system. Such a system
is given by a basis for R, that is, by two linearly independent vectors e,,
e, € R. From IL5 it follows that every vector x € R has two numbers &,
and ¢, associated with it (its coordinates in this reference system) such that

x = e + Ee,.

1.2. Plane Euclidean Geometry

Axioms I and II define a two-dimensional vector space whose geometry is the
geometry of the affine plane. It becomes a Euclidean geometry once we
introduce a (Euclidean) measure of length and angle. We can arrive at such
a measure by defining, for any two vectors x and y in R, a scalar product
(x, y) with the following properties.

ITI.1. (x, y) is a real, symmetric function of its arguments x and y:
(x,y) = (3, x).
111.2. (x, y) is linear in each argument.¥

I11.3. (x, y) is positive definite, that is, (x, x) = 0, and equality holds
only for x = 0.

The length, norm, or modulus |x| of a vector x is defined by
|x] = +V/(x, x).
It is easily proved (Exercises 1 and 2)i that the following inequalities hold:
1) Schwarz’s inequality (x, y)* < |x|? |y]*:
2) The triangle inequality |x 4 y| < |x| + |y|.
The angle [x, y] between two vectors x, y (#0) is defined by

x5
1% | ¥l
Two vectors are therefore orthogonal if (x, y) = 0.

cos [x, y] =

t A function f(x) is said to be linear, if f(Ax) = Af(x) and f(x; + x3) =
f(x1) + f(xp). The linearity of the scalar product (x, y) asserts, therefore, that this
product obeys the distributive law.
T Unless there are indications to the contrary, the numbers will always refer to the
exercises at the end of the chapter.
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If e,, e, is a basis for R and if the vectors x, y have the representations
x = £e + Ee, Yy = e, + ne;
in terms of this basis, then
2
(x,y) = (§1e) + &z, ey + 7m2e3) = E_ gk M

k=1

where the g;;, denote the real constants

g = (€1, €) (812 = &21)-
The square of the norm of x is the quadratic form

|x|* = (x, x) = t%gtkfsz = gnél + 281266 + 82265

It reduces to the Pythagorean form
x| = & + &
if and only if the coordinate system is orthonormal; that is,
(e1, €2) =0, le)| = |ex] =1

(the Cartesian coordinate system).

1.3. Extension of the Set R to a Vector Algebra

In what follows, we shall not introduce a metric into the plane R for the time
being, so that we shall be dealing with an affine geometry on R defined by the
postulates in groups I and II. The problem before us is to see whether it is
possible to extend I and II so as to give R the siructure of a field (or algebra),
and, if this is possible, to discover in how many different ways it can be done.

The vector space R becomes an algebra once we are able to define, for
any two elements x, y € R, a “product”

z=Xxy €R
which satisfies the following axioms.

IV.1. The product is commutative: xy = yx.
IV.2. The product is bilinear, that is, linear in each factor.
IV.3. The product is associative: x(yz) = (xy)z.

IV.4. The product xp vanishes, xy = 0, if and only if at least one
factor vanishes.

1.4.

Our task, then, is fo find all bilinear forms xy € R which satisfy these axioms IV .
In order to arrive at the general solution to this problem, we shall assume, at
first, that we already have a product xy defined on R in accordance with axioms
IV and see what this tells us.
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If we fix the vector y # 0 in the product z = xy, we obtain a linear
transformation in x which maps the plane R into itself. This mapping is
one-to-one, forif z, = x,y, z, = x,), then

zy — z; = (x; — x).

Since y was assumed to be different from 0, z, — z, will vanish if and only if
x, — x, = 0. Different vectors x therefore have (for each fixed y # 0) different
image vectors z = xy.

Ot the other haud, the range of the mapping z = xy is the whole plane R.
For, if x, and x, are two vectors in R, and A, and A, are two arbitrary real
numbers, then

(Aix) + %)y = A x1y + Axy = Aizy 4 Az,

where z, = x,v, z, = x,y. From this we see that the image vectors z,, z, are
linearly independent if and only if the vectors x,, x, are linearly independent.
Hence, if x,, x, is a basis for R, then z,, z, will also be a basis. If the vector
x has the coordinates A, A, in the system (x,, x,), then its image vector has
the same coordinates in the system (z,, z,), for z=xy = A,z, + A,z,. Hence,
the set of image vectors z = xy covers the plane R exactly once if x runs
through all values in R (for y fixed).

Thus, for any given vector y # 0, there is precisely one vector x which
makes the product xy take a prescribed value z; that element is the “quotient”
x=zfy.

1.5. Definition of the Unit Vector e

If, in particular, we take z = y (0), then there is a definite vectore = e, € R
having the property that e,y = y. We shall show that e, is independent of the
choice of y. Let y, and y, be two non-zero vectors. If e, y, =y, €,1, =y,
then

Y2 V2
e = =y,= = (e, y)=>
2V =.Y2 lyl 11 »

and this last expression is, by axiom IV.3 (the associative law), equal to
e,(»1¥2/y1) = e,y,. Hence, e,y, = €,,, or (e, — €3)y; = 0, from which it
follows that e, = e,, since y, # 0.
The element e (#0) defined uniquely by the equation
ey=ye=y (1.1)

is called the unit vector, or unit, in R.

1.6. Definition of the Vector i
Let a be an arbitrary vector in R and consider the equation
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If this equation has a solution x = x,, x? = g, then, for every vector x € R,
we have
x—a=x%—x2=(x—x)(x+ x)),

so that the equation x*> — @ = 0 has, in addition to x = x,, one further
solution x = —x,.
Let us choose @ = —e and solve the equation

x2+e=0. (1.2)

The existence of a solution will be shown in an exercise (Exercise 3). We
denote the solutions by x = +i (#0). The vector i is linearly independent
of the vector e, for, if i = Ae (A real), then we would have —e = i2 = (Ae)? =
A2e? = A2, or (1 + A%)e = 0, which is impossible, since both 1 + A2 # 0 and
e # 0.

The vectors x = e and x = i span the entire plane R. An arbitrary vector
x € R has the coordinate representation

x = e + ni.

This representation has been found under the assumption that there is a
product, defined for pairs of vectors x,, x, € R, which satisfies the axioms IV.
If x, and x, are written in terms of coordinates,

Xy = gle =+ nli9 Xy = §2e + "72i,
it follows from IV and the definition of the basis vectors e and i via (1.1) and
(1.2) that the product x,x, must have the form
x1x; = (€1 + mii)(éze + nai)
= (§:€2 — mim2e + (E1m2 + M)l (1.3)

The quotient x,/x, (x, # 0) is defined to be that vector x = e + 7i which,
when multiplied by the vector x, = &,e + 7,4, yields the vector x, = £,e + n,i.
With the aid of (1.3), we can obtain the coordinates £, ) of x from the equations

EX —mm =&,  mMmE+ Em =1

Therefore the quotient x,/x, is given by the expression

x, _ Eie+mi _ £1&2 + mumz

X, &+ i &+

1.7. The Solution of the Extension Problem

We now turn all this around and choose any two linearly independent vectors
in R, label them e and i, and define the product x,x, of two vectors
x; =&+ ;i (j=1, 2) by means of Eq. (1.3). We shall then have
ex = xe = x and i? + e = 0, and all the axioms IV will be satisfied. The
verification of axioms IV.1-3 we leave to the reader. To prove IV.4, we

”‘gg ; f’é”z i. (1.4)

e+
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observe that the equation x,x, = 0 is equivalent, by (1.3), to the coordinate
equations
&6 — M2 =0, Emz +mé =0.

Squaring and then adding, we obtain
(€% + 7D(& + 73) = 0.

Consequently, &, =7, =0 or &, =%, =0, that is, x;, =0 or x, =0 (or
x, = x, = 0), as required by axiom IV .4.
We have, therefore, completely solved the problem before us:

If the vectors e and i are any two arbitrarily chosen linearly independent
vectors, then (1.3) furnishes a definition for the product of two vectors in R
which makes R into a field (or algebra, that is, a vector space which satisfies
the axioms IV), and this definition of the product is the only one that is
compatible with all the axioms.

1.8. Notation for Complex Numbers. Absolute Value and Argument

Having made R into a field in which every vector, or complex number, can be
written as £,e + &,i, we want to say something about notation. Vectors fe
(¢ real) along the e-axis we shall denote, for brevity, by £ alone, by dropping
the e. In view of the property xe = ex = x which defines the unit, this can
hardly lead to confusion. Furthermore, in keeping with a long-standing
custom we shall denote the coordinates of a complex number z = ¢,e + &,i =
&+ &iby € = x, €, =y, and write

z=x+iy.

The real number x is called the real part of z, and the real number y is called
the imaginary part of z. These terms can be abbreviated to

x = Rez, y=Imz

We now introduce @ Euclidean metric into the “complex plane’ R by
defining the scalar product (z,, z,) of two complex numbers z, = x, + iy,,
Z, = X, + iy, as

(215 22) = X1%3 + Y1 )2
This means that the basis vectors e and i are orthogonal to one another, and
that their lengths are one: |e| = |i| = 1.
The modulus or absolute value of a complex number z = x + iy is then

given by
|z] = +V(z, 2) = +Vx? + 2.
If we go over to polar coordinates, we get

z = r(cos ¢ + isin @),



§1 THE COMPLEX NUMBERS T

where r = |z|, ¢ = arc tan y/x. The quantity ¢ is called the argument of z:
arg z = ¢ = arc tan y/x.

As long as z # 0, ¢ is defined up to a multiple of 27 (we say “modulo 27,”
and write “mod 27°).
In this notation, the product of two complex numbers

z; = r(cos ¢y + isin ) (k =1, 2)
is
2,2, = rirp{cos ($, + ¢2) + isin (¢, + ¢2)}.
From this it follows that

The absolute value of the product of twe complex numbers is equal to the
product of their absolute values, while the argument of the product is equal
to the sum (mod 2m) of the arguments of the factors:

|2,22] = |z,] |2a], arg (z,z,) = arg z, + arg z, (mod 2).

The latter rule presupposes that the factors are different from zero, since the
argument of the number z = 0 is indeterminate.
From the product rule it follows that

2l _ lal
70 |z’
If all n factors, z = r(cos ¢ + isin ¢), of a product are equal we obtain
[r(cos ¢ + isin $)]* = r"(cos nd + i sin nd).

This yields as a special case, for r = 1, de Moivre’s jormula

arg% = arg z, — arg z, (mod 2).

(cos ¢ + isin )" = cos nd + i sin ne. (1.5)

The numbers x + iy and x — iy are said to be complex conjugates. The
complex conjugate of the complex number z is denoted by Z; obviously,

1 1
s 12 " = I
2Z = |z|% Re z —2(z + 2), Imz = 2i(z 2).

Geometrically speaking, the addition of complex numbers corresponds
to vector addition (according to the parallelogram rule). The difference
z, — z, corresponds to a vector whose initial point is at z, and whose end-
pointis at z;. The modulus of the difference |z, — z,| gives the distance between
the points z, and z,.

Since the complex numbers form an algebra (axioms I-1V), the rational
operations of arithmetic (addition, subtraction, multiplication, and division)
obey the same rules as in the real case. Over and beyond this, the defining
equation i? = —1 must be taken into account.
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§2. POINT SETS IN THE COMPLEX PLANE

1.9. Convergent Sequences
A sequence of complex numbers

215 25 & & 75 By 5 i (1.6)
tends to a limit,
lim z, = z, (1.7)

if, to any arbitrarily prescribed number € > 0, a number ne > 0 can be
found such that
|z, —z| <€  for n = He. (1.8)
The condition (1.8) says, geometrically, that all the points z, (n = n) lie in
a circle about z with radius e.
Letz =x + iy, z, = X, + iy,
Then the conditions
Iim x,; = x and limy, =y (1.9)

n—-oo n—o

are necessary and sufficient for (1.7) to hold.

The necessity of the condition (1.9) follows immediately from the in-

equalities
[%a—x[ = |za =2l [ya—| = 22— 2]

Conversely, if (1.9) is fulfilled, then there exists a number N with the property
that
€
2
Consequently, for all # = N we have

|x, — x| < and |y,,—y]<§ for nz=N.

lzn_zl=\/(xn_x)2+(yn_y)2<7€§<€,

which shows that the condition (1.9) is also sufficient. The following theorem
is also easy to prove (Exercise 16):

If z # 0, the conditions
lim |z,| = |z| and lim arg z, = arg z (mod 27)

are necessary and sufficient for the validity of (1.7).
When the sequence z, (n = 1, 2, . . .) is such that

lim |z,| = o,

n—»00
we say that the sequence tends to « and write simply

lim z, = .

n—o
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This limit, o, is taken as a point, the point at infinity, of the complex plane.
The plane, completed by the single point at infinity, is called the extended,
or closed, plane. In many questions, the point z = « has an equal status
with the finite points of the plane (cf. Section 3.13).

1.10. The Topology of the Complex Plane

The set of points z belonging to the interior of a disk of radius r with center
at the point zy = x¢ + iyp # ©:

K |z —zo| <r

is called a circular neighborhood of z,. A circular neighborhood of the point
z = « will be taken to mean the set of points which lie outside some circle of
radius r about the origin: [z| > r.

A set of points {z} in the extended plane |z| £ o is said to be open if each
of its points is the center of some circular neighborhood which belongs
entirely to the set.

An open set of points {z} in the extended plane |z| £ « forms a domain
if it is possible to join any two points in {z} by a polygonal path which lies
entirely in {z}. (This condition makes the open set connected.)

Any domain containing the point z is called a neighborhood of z,.

A point a is called a cluster point (or sometimes, a /imit point or accumula-
tion point) of a set of complex numbers {z} if every circular neighborhood of
a contains at least one point z # a of {z}. From this it follows that every
neighborhood of a cluster point @ must contain infinitely many points of the
set.

If a set contains all of its cluster points, the set is said to be
closed.

The set of points |z| < « is open. The extended plane |z| = « is both
open and closed (Exercise 18). Open sets and closed sets are important
particular classes of sets, but an arbitrary set of points is, in general, neither
open nor closed.

A closed set which cannot be split into two disjoint closed subsets is called
a continuum.

A set of points {z} is said to be compact if any infinite subset of it has a
cluster point belonging to {z}. (A compact set is therefore closed.) The
closed plane |z| < « is compact.

The set of points in the plane which do not belong to a given set {z} forms
what is called the complement of {z}. The complement of an open set is
closed, and the complement of a closed set is open (Exercise 20).

1 The finite plane can also be extended in other ways. For example, in projective
geometry, there is the so-called line at infinity with its infinitely many, infinitely
distant points.
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Let G be a domain. If G does not contain every point of |z| < «, then
the points of the complement of G fall into two classes:

a) Boundary points of G. These do not belong to G, but are cluster points
of G. The set of boundary points forms the boundary of G.

b) Exterior points of G. These are points which belong neither to G nor
to the boundary of G. This set can be empty.

If I' is the boundary of the domain G, then the union G U I' (that is, the
set of all points which belong either to G or I") is a closed set (Exercise 21).
It is called the closure of the domain G.

The union of a domain and its boundary is also called a closed domain.

§3. FUNCTIONS OF A COMPLEX VARIABLE
1.11. Definition of a Function. Continuity

Functions of a complex variable are defined in the same manner as functions
of a real variable:

If'to every value z in adomain G there corresponds a definite complex value w,
then the mapping f: z — w is said to be a function defined in the domain G.

The number w = f(z) is called the value of the function at the point z.

In what follows we shall consider first only those functions which assume
finite values in a finite domain, that is, a domain belonging to the finite plane
|z] < oo.

The real and imaginary parts, ¥ and v, of the function f(z) are real
functions of the real variables x and y (z = x + iy):

u= u(xa y)9 v= U(xs }’)

Conversely, any two such functions always define one complex function
f@ =u+ivofz=x+iy.
Continuity is defined in the same way as in the real case:

A function w = f(z) is continuous at the point z if, to every positive number
€, there corresponds a positive number p., such that

| f(z+ dz2) — f(2)] < e whenever |4z| < p..

Geometrically speaking, the continuity of a function w = f(z) at z = z,
means this: to an arbitrarily small disk K, centered at wy = f(zo) there
corresponds a disk K, about z, with the property that w = f(z) lies in K,
whenever z lies in K.

The limit of a function is defined in the same way as the limit of a sequence
in Section 1.9. Everything that was said there about the limit of a sequence
of complex numbers applies here as well. Combining the definitions of



