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Preface

Materials science is a field of study that is also commonly known as materials science and engineering or materials
engineering. It is an interdisciplinary field which focuses on the study of matter and their properties. It also
includes the discovery and design of new materials. This is a relatively new field of science which involves studying
materials through the paradigm of, structure, performance, properties and synthesis performance. It is a discipline
that incorporates the fields of physics and chemistry, and is at the vanguard of nanotechnology and nanoscience
research. Material scientists study materials from an integrated point of view, usually searching for co-relations
between structure and properties of a material as well as changes in it and its performance. Materials science
has been gaining a foothold in recent years as a distinctive field of engineering and science. It is an essential
component of fields such as forensic science and failure analysis. There are many problems in various scientific
research projects that are caused by the limitations in the materials available and discovered as of yet. This ensures
that there is a constant need for breakthroughs in this field as they are sure to have noteworthy and significant
impacts on the future technology.

This book is an attempt to collate and compile the various branches of materials science and related research under
one aegis. | am thankful to those who put in effort and hard work in the making of this book. I am also grateful
to my friends and family who supported me in this endeavour.

Editor
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Stress and Strain Analysis of Functionally Graded Rectangular
Plate with Exponentially Varying Properties
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The bending of rectangular plate made of functionally graded material (FGM) is investigated by using three-dimensional elasticity
theory. The governing equations obtained here are solved with static analysis considering the types of plates, which properties
varying exponentially along z direction. The value of Poisson’s ratio has been taken as a constant. The influence of different
functionally graded variation on the stress and displacement fields was studied through a numerical example. The exact solution
shows that the graded material properties have significant effects on the mechanical behavior of the plate.

1. Introduction

Recently, a new category of composite materials known
as functionally graded materials (FGMs) has attracted the
interest of many researchers. The FGMs are heterogeneous
composite materials in which the mechanical properties vary
continuously in certain direction. FGMs are used in many
engineering applications such as aviation, rocketry, missiles,
chemical, aerospace, and mechanical industries. Therefore,
composites that are made of FGMs were considerably attrac-
tive in recent years.

Several studies have been performed to analyze the
behavior of functionally graded beam, plates, and shells.
Hadi et al. [1, 2] studied an Euler-Bernoulli and Timoshenko
beam made of functionally graded material subjected to a
transverse loading at which Youngs modulus of the beam
varies by specific function. Reddy [3] has analyzed the
static behavior of functionally graded rectangular plates
based on his third-order shear deformation plate theory.
Cheng and Batra [4] have related the deflections of a simple
supported functionally graded polygonal plate given by the
first-order shear deformation theory and a third-order shear
deformation theory to an equivalent homogeneous Kirchhoff
plate. Cheng and Batra [5] also presented results for the
buckling and steady state vibrations of a simple supported

functionally graded polygonal plate based on Reddy’s plate
theory. Loy etal. [6] studied the vibration of functionally
graded cylindrical shells by using Love’s shell theory.

Analytical 3D solutions for plates are useful because
provided benchmark results to assess the accuracy of various
2D plate theories and finite element formulations. Cheng and
Batra [7] used the method of asymptotic expansion to study
the 3D thermoelastic deformations of a functionally graded
elliptic plate. Recently, Vel and Batra [8] have presented an
exact 3D solution for the thermoelastic deformation of func-
tionally graded simple supported plates of finite dimensions.
Reiter et al. [9] performed detailed finite element studies of
discrete models containing simulated particulate and skeletal
microstructures and compared the results with those that
are computed from homogenized models in which effective
properties were derived by the Mori-Tanaka and the self-
consistent methods.

Tanigawa [10] used a layerwise model to solve a one-
dimensional transient heat conduction problem and the asso-
ciated thermal stress problem of an inhomogeneous plate. He
further formulated the optimization problem of the material
composition to reduce the thermal stress distribution. Tanaka
et al. [11, 12] have designed FGM property profiles by using
sensitivity and optimization methods based on the reduction
of thermal stresses. Jin and Noda [13] used the minimization



of thermal stress intensity for a crack in a metal-ceramic
functionally gradient material as a criterion for optimizing
material property variation. In the same context, also were
studied both the steady state [14] and the transient [15] heat
conduction problems by them, but neglected the thermome-
chanical coupling (see also [16, 17]).

The response of functionally graded ceramic-metal plates
has been investigated by Praveen and Reddy [18] with using
a plate finite element that accounts for the transversal shear
strains, rotatory inertia, and moderately large rotations in
von Kdrman sense. Reddy and Chin [19] have studied
the dynamic thermoelastic response of functionally graded
cylinders and plates. Najafizadeh and Eslami [20] presented
the buckling analysis of radially loaded solid circular plate
that is made of functionally graded material.

In this paper, an exact solution bending of rectangular
plate made of functionally graded material (exponential form
along z direction) subjected to top and bottom pressures
Pr and Pp, respectively, is investigated by using three-
dimensional elasticity theory.

2. Analysis

The equilibrium of a weightless homogeneous transversally
isotropic elastic FGM plate is considered. The geometry of the
elastic FGM plate in relation to the coordinate axes is shown
in Figure 1.

The plate is assumed under the action of top and bottom
pressures P and Py, respectively,

ny
a b’
(1
ny
Py = Py, Sin = sin =2
a b’

where P, and Py, are top and bottom pressures in x = a/2,
y=b/2.

In order to account for the changing material properties
along the z direction, an exponential relationship is used as
follows:

E(z) = E;"®M, )
Here E; is the module of elasticity at z = 0, and » is the

inhomogeneity constants determined empirically. Equilib-
rium equations in three dimensions are defined as follows:

aUx aT"Y + asz

ax oy oz
or do, Ot
ey y yz
L =0, 3
=4 5 = (3)

asz aTJ’Z aoz _
—xz gy X4z,
ox dy 0Oz
where o, 0
y, and z direction, respectively. 7,, 7,,, and 7,,
stresses components.

y» and o, are normal stress components in x,
are shear
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FIGURE 1: Geometry and boundary conditions of the plate.

The displacement in the x, y, and z directions is denoted
by u, v, and w, respectively, six strain components can be
expressed as

y Mz
xz Ayz &
i du 1(du dv\ 1 (du dw)\T
dx 5(5 Z) E(E E)
_ l(@ ﬂ) a8 l(ﬂﬂ_w)
2\dy dx dy 2\dz dy/|’
Lfde, du Lo Joy g
| 2\dz dx/) 2\dz dy dz |

(4)

where,, ), and ¢, are normal strain componentsin x, y,and
z directions, respectively. A,,, A, and A, are shear strain
components.

The stress-strain relations are

E(z) [ ou ov  ow)]
%=W5§%ER“”%*(%*%)’Q
Uz=% (1‘“)_+ (gi 2_;)
rxy=G(z)[g—;+% >
_G(z)[g” g‘: : (6)
TYZ=G(Z)[SZ aal;}f

where G(z) = E(z)/2(1 + v) is shear modulus, with E(z)
the modulus of elasticity and v Poisson’s ratio. The value of
Poisson’s ratio has been taken as constant.
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The boundary conditions of the problem are the follow-
ing. Along the sides of the plate, we have

x=0, a—w=0, o, =0,
7)
x=0, b—w=0, 0,=0
the boundary conditions on the plate faces are as below:
z=—-—0,=F, Tee =Ty =0,
8)
zZ=-=—0, =P, sz=Tyz=O

By the displacement field below, the boundary conditions (7)
are satisfied:

mx
u=u(xyz)=U(z)cos p sin ot
v=v(x,y,z)=V(z)sinEcosﬂ, 9)
a b
ny

w=w(x,yz2) = W (2) sin = sin —~.
a

b

Substituting (9) into (5) and the resulting expressions for
stress components into equilibrium equations (3), we see that
the equilibrium equation is expressed as system of second-
order ordinary differential equations:

d*U ndU
3t = 3o —w
32 thag ThUTLY ]3d ¢
A’V ndv a_dW 7n
@z Tha VU e Y
(10)
b_ dU a_ dv
et U+ —J].—
]3 +Jab +7'r]3dz
a*w ]ndW
+]4aV+]5d ;d +JgW =0,
where
5L,
I3 Iy
]5 ]6
YAl 2(1-v) ) - 2(l 2(1-v) )'
"(b2+a2(1—2v) "\Z T ra-w)
_ —_7r2( 1 ) B 2nurmr
ab \1-2v abh (1 — 2v)
2(1-v) 2
L 1-2v T 22p? (a +b2) :
(11)

Therefore
, n ™ B
(S +FS+]1)U+]3V+(——]3S+a_h)W_O’
» N ™ B
]3U+(S +HS+]2)V+(——]3S+ bh)w-o,
b a
(;]38 + L,b)U + (;]38 + L,a)V (12)

+ (]582 + ]57"8+16)W= 0,

S=—.

The general solution of (10) is as follows:

U =C,e"* + C,e"™* + Cye™*
+Ce™* + Cse™° + Cye™,

V = C,e""* + Cge™* + Cye™*
(13)
+C €™ + Cp %% + Cppe™®

512 S22 $32Z
W=Cpe" +Cpye® +Cige™

S4Z SsZ S6Z
+Cie +Cye"" +Cge

where s, 55, ..., 5 are the roots of the equation below:

2, 1 b, m
S +hS+]l I 7r]3s+ah

a mn
—Z1.S+ — =
meEE ol

det T, $2 4 %s +7,

b a 2 Isn
== —J53S S+ =S
71_]3S+]4b 71']3 +}4a IS + h +]6

(14)

where C,,C,,...,C,; are arbitrary integration constants.
The resulting displacement field is defined as follows:

[Ce" + C,e™% + Cye™* + Cye™®

nx . M
+C.e"% + C.e**] Cos — Sin _y,
5 6 a b

+Cpe™*

L . TIX T
+C,, €™ + Cp,**] Sin — Cos -Fy,
a

542
+ C g€

ry

X
+ Cyq€e"%] Sin — Sin —=.
18 ] 1 a b

u(x,y,z)=

v(x, y,2) = [C,e"" + Cge™* + Cye™*

(15)

w(x, y,z) = [C3e"* + C4e™* + C 5™

+C,,e%*

Substituting (15) into (5), (6) stress component is calculated
as follows:
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E;e"™!" Sin (7rx/a) Sin (7ry/b)

o

2 (1-20)(1+v)
(-vn (C1e%% + C, 6% + Cye%7 + Cye™® + Cse™* + Cye™”)
a (16a)
X 0(Cye™" + Cye™* + Coe™* + Cppe™* + C 1™ + Cppe™) m ;
b
+0 (C3€%%s; + C 4775, + Cy5€%%s5 + Ce™%s, + Cyre%%s5 + Cige°sg)
E;e"™'" Sin (mx/a) Sin (y/b)
g, =
y (1-2v)(1+v)
(1= 0)m(Cre™® + Cye™ + Coe™™ + Cype™ + Cy 1™ + Cppe™)
b (16b)
X v (C,e"* + C,e* + Cye™° + Cye*® + C5e™* + Cye™) 1 ;
a
+0 (C\3€%%s; + C,,e7%s, + C15e™7s; + C€™%s, + C,%%ss + C ge%%sg)
- E,e"™" Sin (mx/a) Sin (my/b)
< (1-2v)(1 +v)
_um (Cyeh® + Cye®® + Coe™® + Cye™* + Cye™* + Cppe™)
3 (16¢)
v (C,e"% + C,e%" + Cye™* + Cye™* + Cse%% + Cge™?)
X - - ,
c(l=g) ( Cy3€"7%s; + Cp4e™%s, + C5™7s, )
S42 S52 S6Z
+C g€ s, + Cre%s5 + Cge™“s,
C,e"* + Cge™® + Cye™ + Cpe™® + Cy e%* + Cppe™*
/h
_ E;e™"'n Cos (mx/a) Cos (ry/b) a
T")’ - 2(1 5,2 5,2 S32 542 S5z S6Z y (16d)
(1+v) +Clel + C,e"” + Cye™° + Cue™ + Cse™* + Cye™
b
- E,e"*"mt Cos (rrx/a) Sin (ry/b)
sz -
2(1+v)
52 5,2 $12 $42 $52 $62
Cp3e° +C e + Cise" + Cge™ + Cpe” + Cige (16€)
" a
+Cls,e’lz + C;5,6%% + Cy55 + Cy5,6"% + Cs55€% + Cgs6e’* |’
m
E,e™/" 7 Sin (nx/a) Cos (y/b)
Ty, =
2(1+v)
C3€"% + C %% + C ™% + Cige™” + C,e%° + C ge™* (16f)
» b
+C751e5‘z + Cygs,e"% + Cys3€™% + Cpps4e™” + Cyp55€%% + Cp54€™°
T

The resultant moments on a unit of length are obtained by  using relations (16a)-(16f):
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_ E;Sin (nx/a) Sin (y/b)
o (1-2v)(1 +v)
[ [ " 1 -aCj,qum 17
e(hlz’("/'”""l1(—2 +h( 1+ —S)) Ci(-1+v)m
" 2 2 +b +aC.. - vs (17a)
x | 3 (ab(n + hs;) %) e ;
i=1 -aC;, qum
ooy ( (G
L 2 2 +b( ' )
| +aC;, 1, Us; B
_ E;Sin (nx/a) Sin (1y/b)
- (1-2v)(1+v)
i i -bC.um |
L2k, ( hn “h (_1 . 5)) c (_’1 2B W
. 2 2 +a ( = ) (17b)
Z +bCi1p0s;
X )
=1 ab(n +hs;) -bCum
—(h/2)(n/h+s)h( hn +h(—l— ﬁ)) Cic (-1 +0)7
2 2 +a( HEO )
L L +bC;, 15 Us; ]
5% - E;m Cos (nx/a) Cos (my/b)
< 2(1 +v)
hn hs;
(h/2)(n/h+s;) [ 110 1.y (17¢)
S h(aC; +bCpg) | € (2 +h( H 2))
5 (n+hs) e~ hIDn/hts;) (_@ & (_1 N ﬁ))
2 2
Using (16a), (16b), (16¢), (16d), (16¢), and (16f) the transverse
shearing forces on a unit of length are by definition
E; Cos (rx/a) Sin (y/b) S h(Ciyypm +aCys;) (h2)(n/h+s)  —(h)2)(n[h+s;)
Q= 2a (1 +v) ; n+ hs; ¢ ¢ I (18a)
_ E, Sin (x/a) Cos (y/b) Zh(cx+1z7’ +bC;i65:) [ (h/2)(nfhts) —(h/2)(n/h+s)] (18b)
Y 2b(1+v) &= n+ hs;

3. Results and Discussion

In the following, the obtained solution will be employed to
analyze the effect of material inhomogeneity on the elastic
field in the rectangular plate. Consider a rectangular plate

with length a = 1.5m, width b = 1m, and thickness
h = 0.2m, with material property E; = 70 GPa, subjected
to top and bottom pressures Py, = —3 x 10° Paand Py, =

~1.5 x 10° Pa, respectively. It is assumed the Poisson’s ratio v
has a constant value of 0.3. Dimensionless and normalized
variables are used. For different values of n, dimensionless
modulus of elasticity along the z direction is plotted in

Figure 2. According to this figure, at the same position —0.5 <
z/h < 0, dimensionless modulus of elasticity is increasing
as the parameter n is decreasing, while for 0 < z/h <
0.5, dimensionless modulus of elasticity is increasing as the
parameter n is increasing.

Figure 3 displays the nondimensional displacement of the
plate in z direction for different values of parameter ». This
plot displays that the magnitude of changing w by z is low, so
for, n < 0 assuming plane strain is true and reasonable, but,
for n > 0, the amount of changing w by z is high.

In Figure 4 is shown the nondimensional displacement in
the x direction versus x/a for z = h/3, y = b/2. In this plot
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FIGURE 2: Distribution of modulus of elasticity.
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FiGure 3: Distribution of displacement in z direction of the plate
versus z/hatx = a/2, y = b/2.
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FIGURE 4: Distribution of displacement in x direction of the plate
versus x/aat y = b/2,z = h/3.

displacement is decreasing as the parameter # is increasing.
In Figure 5 is shown the nondimensional displacement in the
y direction versus y/b for z = h/3, x = a/2.

In Figure 6 is shown the variation of nondimensional
stress in the z direction versus nondimensional thickness at
the x = a/2, y = b/2. This plot shows that the boundary
conditions at the up and down surfaces are satisfied. Also at
the constant z, by increasing the parameter #, it is observed
the stress is decreased.
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FiGure 5: Distribution of displacement in x direction of the plate
versus y/batx = a/2,z = h/3.

F1GURE 6: Distribution of nondimensional stress in the z direction
versus z/hat x = a/2, y = b/2.
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FIGURE 7: Distribution of 7, /Py, versus z/h at x = a/2, y = b/2.

Figure 7 shows the (r,,/Py) x 10" according to the
z/h for the variable amount of n: this figure probes that the

stress’s component can be deleted proportionally to other
components.

4. Conclusion

It is apparent that close form solutions are important to
simplified kinds of real engineering problems. In this paper
is studied the rectangular plate that is made of functionally
graded material with the variable properties (exponential
form) by using 3D elasticity theory. Then some exact solution
packages for stresses, displacements are presented.



