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FOREWORD

This volume is the proceedings of the School on Foams, Emulsions and
Cellular Materials, held in Cargese (Corsica), May 12.-24, 1997. The school
gathered a wide spectrum of participants and lecturers, coming from various
communities and countries, from university to industry (nuclear, petroleum,
chemical, mechanical and thermal).

The volume is intended as a general and introductory survey of the field.
The authors have tried to be clear and didactic. Because the field spans several
scientific disciplines and is relatively new, there are no textbooks with all the
basic tools necessary for research students. We trust that the present book will
serve this purpose. ‘

The chapters are grouped in sections, but with fairly loose boundaries.
While cross-referencing has been encouraged, each chapter is intelligible on its
own, and if a few concepts are not familiar to the reader, their explanation can
be found in an earlier chapter, as referred to in the index.

The book contains all the lecture courses, and several contributions selected
because they were new and promising developments, not yet available in print
elsewhere, or because they covered aspects of the subject not discussed in the
lectures. It was not possible to include the lecture course by Yann Barrandon on
the renewal of the epidermis. It contained medical and biomedical applications,
a very wide domain, which cannot be reduced to a single chapter in a general
treatise on foams. For an introduction on the subject, see chapter 7 of the
monograph by Dover and Wright [1]. The close connection between epidermis
and foams is shown by the fact that Lewis's law was discovered on the
epidermis of the cucumber, and by this photograph of the basement membrane
of human epidermis (B. Dubertret [2]). *
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We are grateful to Michael Leunig for permission to reprint his cartoon, to J.
Sullivan, G. Boissonnet and B. Dubertret for photographs of computer-
generated or real foams. Other photographs are by T. Aste, B. Gardiner, D.
Weaire, K. Stebe, U. Thiele and N. Rivier. C. Oguey has helped with the edition
and the index.

We would like to thank the Centre of Cargése and its Director, Elizabeth
Dubois-Violette for their hospitality and for their help in the running of the
school. The school has been sponsored and supported by NATO, by the Institut
Frangais du Pétrole, by Rhone-Poulenc, and the French granting agencies:
CNRS (Formation Permanente) and DGA. This volume has been published with
the help of a special grant from NATO.

Jean-Frangois Sadoc
Nicolas Rivier

1. Dover, R. and Wright, N.A. (1991) Physiology Biochemistry and Molecular
Biology of the Skin, 2nd. edition, Oxford University Press.

2. Dubertret, B. and Rivier, N. (1977) The renewal of the epidermis: A topological
mechanism, Biophys. J. 73, 38-44
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SURFACE ENERGY AND SURFACE RHEOLOGY
RELATION TO FOAM PROPERTIES

D.LANGEVIN

Centre de Recherche Paul Pascal
Av. A.Schweitzer

33600, Pessac, France

Foams made from pure fluids are generally very unstable : bubbles
obtained by shaking pure water last only for a few seconds. When a surface
active substance is added to water, bubbles lifetime can become much
longer. The increase in surface energy due to the increase in surface area
after the creation of the bubbles is substancial : for instance if one cm3 of
solution with a surface of about one cm? is shaken to produce a foam with
bubbles of millimetric size, the air-solution area increases by a factor of ten
and the surface energy, which is proportional to the area, increases by the
same factor. Of course, the surface tension of the solution is decreased by
the presence of the substance, but the state of equilibrium is the state of
minimal energy and is in any case the state of minimal area : the foam can
never be stable. The difference between water and surfactant solutions lies
therefore in the time scales involved in bubbles lifetime. Surface tension is
not the main surface characteristic property there, and other properties such
as surface elasticity, surface viscosity, dynamic surface tension, become
extremely important. In this chapter, we will first define all these surface
properties, indicate how they can be determined and discuss how they
influence the foam properties.

I. Definition of surface properties
1. SURFACE ENERGY

1.1 Surface excess properties

The definition of properties such as viscosity for a purely two-dimensional
system poses some difficulties. Real interfaces between two media are never
perfect mathematical surfaces, all the physical properties change from those

J. F. Sadoc and N. Rivier (eds.), Foams and Emulsions, 1-20.
© 1999 Kluwer Academic Publishers. Printed in the Netherlands.
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of the lower medium to those of the upper medium in a thin interfacial
region, with a thickness comparable to molecular dimensions. This led Gibbs
to define surface properties as excess properties [1]. For instance if z is the
vertical coordinate, A the surface area, if medium 1 of density p is located
in the region z<0 , medium 2 of density p7 in the region z>0, if F(p;) is the
total energy of medium i and f(z) the energy density at heigth z, the excess
energy due to the presence of the interface in the region z ~ 0 is given by,
according to Gibbs :

<400
AF=A [fdz -F(p1)-F(p2) (1)

-00

Because the density p varies in a thin region around z=0, the integral is not
equal the sum F(p1) + F(p2) : there is an excess energy AF which is currently
referred to as the "surface" energy. The surface tension 7y is simply :

Y=AF/A (2)

When a surface active substance is added, it spontaneously adsorbs at the
surface, and decreases the surface energy (otherwise, there would be no
spontaneous adsorption). A monolayer is formed, with the polar parts of the
surfactant molecule in contact with water, and the hydrophobic parts in
contact with air. The surface tension decrease can be identified by
dimensional arguments with a "surface pressure” II.

Y=Yw-P 3)

where Yy is the surface tension of pure water. Extensive work done with
water-insoluble substances showed that this identification is helpful to
understand the monolayer properties and the transitions between the
different surface phases that can be found with these systems[2]. For water-
soluble substances, it becomes difficult to know the amount of surface
material, because most of the molecules are dissolved in bulk water.
Information about the surface concentration can be however obtained from
thermodynamic arguments.

1.2 Surface Thermodynamics

The free energy F of the system is the sum of the_internal energy U, the
entropy term -TS and the chemical potential term Zui Nj, where T is the
absolute temperature, S, the entropy, Kj the chemical potential of species i



