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Preface to the Third Edition

There are three major changes in the Third Edition of Differential Equations
and Their Applications. First, we have completely rewritten the section on
singular solutions of differential equations. A new section, 2.8.1, dealing
with Euler equations; has been added, and this section is used to motivate a
greatly expanded treatment of singular equations in sections 2.8.2 and 2.8.3.

Our second major change is the addition of a new section, 4.9, dealing
with bifurcation theory, a subject of much current interest. We felt it
desirable to give the reader a brief but nontrivial introduction to this
important topic. :

Our third major change is in Section 2.6, where we have switched to the
metric system of units. This change was requested by many of our readers.

In addition to the above changes, we have updated the material on
population models, and have revised the exercises in this section. Minor
editorial changes have also been made throughout the text.

New York City 3
November, 1982 Martin Braun



Preface to the First Edition

This textbook is a unique blend of the theory of differential equations and
their exciting application to “real world” problems. First; and foremost, it
is a rigorous study of ordinary differential equations and can be fully
understood by anyone who has completed one year of calculus. However,
in addition to the traditional applications, it also contains many exciting
“real life” problems. These applications are completely self contained.
First, the problem to be solved is outlined clearly, and one or more
differential equations are derived as a model for this problem. These
equations are then solved, and the results are compared with real world
data. The following applications are covered in this text.

1. In Section 1.3 we prove that the beautiful painting “Disciples of
Emmaus” which was bought by the Rembrandt Society of Belgium for
$170,000 was a modern forgery.

2. In Section 1.5 we derive differential equations which govern the
population growth of various species, and compare the results predicted by
our models with the known values of the populations.

3. In Section 1.6 we derive differential equations which govern the rate at
which farmers adopt new innovations. Surprisingly, these same differential

~ equations govern the rate at which technological innovations are adopted in
such diverse industries as coal, iron and steel, brewing, and railroads.

4. In Section 1.7 we try to determine whether tightly sealed drums filled
with concentrated waste material will crack upon impact with the ocean
floor. In this section“we also describe several tricks for obtaining informa-
tion about solutions of a differential equation that cannot be solved
explicitly.
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5. In Section 2.7 we derive a very simple model of the blood glucose
regulatory system and obtain a fairly reliable criterion for the diagnosis of
diabetes.

6. Section 4.5 describes two applications of differential equations to
arms races and actual combat. In Section 4.5.1 we discuss L. F. Richard-
son’s theory of the escalation of arms races and fit his model to the arms
race which led eventually to World War 1. This section also provides the
reader with a concrete feeling for the concept of stability. In Section 4.5.2
we derive two Lanchestrian combat models, and fit one of these models,
with astonishing accuracy, to the battle of Iwo Jima in World War II.

7. In Section 4.10 we show why the predator portion (sharks, skates, rays,
etc.) of all fish caught in the port of Fiume, Italy rose dramatically during
the years of World War 1. The theory we develop here also has &
spectacular application to the spraying of insecticides.

8. In Section 4.11 we derive the “principle of competitive exclusion,”
which states, essentially, that no two species can earn their living in an
identical manner.

9. In Section 4.12 we study a system of differential equations which
govern the spread of epidemics in a population. This model enables us to
prove the famous “threshold theorem of epidemiology,” which states that
an epidemic will occur only if the number of people susceptible to the
disease exceeds a certain threshold value. We also compare the predictions
of our model with data from an actual plague in Bombay.

10. In Section 4.13 we derive a model for the spread of gonorrhea and
prove that either this disease dies out, or else the number of people who
have gonorrhea will ultimately approach a fixed value.

This textbook also contains the following important, and often unique
features.

1. In Section 1.10 we give a complete proof of the existence—uniqueness
theorem for solutions of first-order equations. Our proof is based on the
method of Picard iterates, and can be fully understood by anyone who has
completed one year of calculus.

2. In Section 1.11 we show how to solve equations by iteration. This
section has the added advantage of reinforcing the reader’s understanding
of the proof of the existence-uniqueness theorem.

3. Complete Fortran and APL programs are given for every computer
example in the text. Computer problems appear in Sections 1.13-1.17,
which deal with numerical approximations of solutions of differential
equations; in Section 1.11, which deals with solving the equations x = f(x)
and g(x)=0; and in Section 2.8, where we show how to obtain a power-
series solution of a differential equation even though we cannot explicitly
solve the recurrence formula for the coefficients.

4. A self-contained introduction to the computing language APL is
presented in Appendix C. Using this appendix we have been able to teach
our students APL in just two lectures.
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5. Modesty aside, Section 2.12 contains an absolutely super and unique
treatment of the Dirac delta function. We are very proud of this section
because it eliminates all the ambiguities which are inherent in the tradi-
tional exposition of this topic.

6. All the linear algebra pertinent to the study of systems of equations is
presented in Sections 3.1-3.7. One advantage of our approach is that the
reader gets a concrete feeling for the very important but extremely abstract
properties of linear independence, spanning, and dimension. Indeed, many
linear algebra students sit in on our course to find out what’s really going
on in their course. :

Differential Equations and Their Applications can be used for a one- or
two-semester course in ordinary differential equations. It is geared to the
student who has completed two semesters of calculus. Traditionally, most
authors present a “suggested syllabus” for their textbook. We will not do so
here, though, since there are already more than twenty different syllabi in
use. Suffice it to say that this text can be used for a wide variety of courses
in ordinary differential equations.

I greatly appreciate the help of the following people in the preparation
of this manuscript: Douglas Reber who wrote the Fortran programs,
Eleanor Addison who drew the original figures, and Kate MacDougall, -
Sandra Spinacci, and Miriam Green who typed portions of this manu-
script.

I am grateful to Walter Kaufmann-Biihler, the mathematics editor at
Springer-Verlag, and Elizabeth Kaplan, the production'editor, for their
extensive assistance and courtesy during the preparation of this
manuscript. It is a pleasure to work with these true professionals.

Finally, I am especially grateful to Joseph P. LaSalle for the encourage-
ment and help he gave me. Thanks again, Joe.

New York City X :
July, 1976 Martin Braun
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First-order differential equations

1.1 Introduction

This book is a study of differential equations and their applications. A dif-
ferential equation is a relationship between a function of time and its de-
rivatives. The equations

d

—'j— =3yZsin(1+) (i)
and

dy d?y

el it S a4 ii

dr’ dr? (@)

are both examples of differential equations. The order of a differential
equation is the order of the highest derivative of the function y that ap-
pears in the equation. Thus (i) is a first-order differential equation and (i)
is a third-order differential equation. By a solution of a differential equa-
tion we will mean a continuous function y(z) which together with its de-
rivatives satisfies the relationship. For example, the function

y(1)=2sinz—j cos2t
is a solution of the second-order differential equation
d2

—f +y=cos2t

. dt
since

d2 5 1 - 1
;;(2smt — 3 €0s2t)+(2sint — § cos2r)

=(—2sinz+ 5 cos2s)+2sins - } cos2r=cos 21.

1



1 First-order differential equations

Differential equations appear naturally in many areas of science and the
humanities. In this book, we will present serious discussions of the applica-
tions of differential equations to such diverse and fascinating problems as
the detection of art forgeries, the diagnosis of diabetes, the increase in the
percentage of sharks present in the Mediterranean Sea during World War
I, and the spread of gonorrhea. Our purpose is to show how researchers
have used differential equations to solve, or try to solve, real life problems.
And while we will discuss some of the great success stories of differential
equations, we will also point out their limitations and document some of

their failures.

1.2 First-order linear differential equations

.We begin by studying first-order differential equations and we will assume
that our equation is, or can be put, in the form

d
= =f(ty). ‘ (1)

The problem before us is this: Given f(¢,y) find all functions y(#) which
satisfy the differential equation (1). We approach this problem in the
* following manner. A fundamental principle of mathematics is that the way
to solve a new problem is to reduce it, in some manner, to a problem that
we have already solved. In practice this usually entails successively sim-
plifying the problem until it resembles one we have already solved. Since
we are presently in the business of solving differential equations, it is advis-
able for us to take inventory and list all the differential equations we can
solve. If we assume that our mathematical background consists of just ele-
mentary calculus then the very sad fact is that the only first-order differen-
tial equation we can solve at present is

b ) @

where g is any integrable function of time. To solve Equation (2) simply
integrate both sides with respect to ¢, which yields

(0= [ g(tydt+c.

Here c is an arbitrary constant of integration, and by f g(#)dt we mean an

anti-derivative of g, that is, a function whose derivative is g. Thus, to solve
any other differential equation we must somehow reduce it to the form (2).
As we will see in Section 1.9, this is impossible to do in most cases. Hence,
we will not be able, without the aid of a computer, to sclve most differen-
tial equations. It stands to reason, therefore, that to find those differential
equations that we can solve, we should start with very simple equations

2



1.2 First-order linear differential equations

and not ones like

& = esin(l—fﬂ\/?f])

dt
(which incidentally, cannot be solved exactly). Experience has taught us
that the “simplest” equations are those which are /inear in the dependent
variable y.

Definition. The general first-order linear differential equation is

D vay=be). ()

Unless otherwise stated, the functions a(r) and b(7)-are assumed to be
continuous functions of time. We single out this.equation and call it lin-
ear because the dependent variable y appears by itself, that is, no terms
such as e, y> or siny etc. appear in the equation. For example dy /dt
=y?+sint and dy /dt =cosy + t are both nonlinear equations because of
the y? and cosy terms respectively.

Now it is not immediately apparent how to solve Equation (3). Thus, we
simplify it even further bv setting b(7)=0.

Definition. The equation

g

o ta(y=0 4
is called the homogeneous first-order linear differential equation, and
Equation (3) is called the nonhomogeneous first-order linear differential
equation for b(¢) not identically zero.

Fortunately, the homogeneous equation (4) can be solved quite easily.
First, divide both sides of the equation by y and rewrite it in the form

@,
_df_ =—a(1).
Yy
Second, observe that
dy
dt" . d
ik In|y ()|

where by In| y(7)| we mean the natural logarithm of | y(#)|. Hence Equation
(4) can be written in the form

Z1n|y(0)]= - a(0). 5)



1 First-order differential equations

But this is Equation (2) “essentially” since we can integrate both sides of
(5) to obtain that

In|y ()] = —fa(r)dH—c,

where ¢, is an arbitrary constant of integration. Taking exponentials of
both sides yields

|).(t)|=exp(—fa(t)dt+c‘)=cexp(—fa(t)dt)

y(z)exp(fa(t)a’t)

Now, y (1) exp(fa(t)dt) is a continuous function of time and Equation (6)

or

=c. (6)

states that its absolute value is constant. But if the absolute value of a con-
tinuous function g(z) is constant then g itself must be constant. To prove
this observe that if g is not constant, then there exist two different times ¢,
and 1, for which g(7,)=c and g(7,)= —c. By the intermediate value theo-
rem of calculus g must achieve all values between — ¢ and + ¢ which is im-

possible if | g(7)|=c. Hence, we obtain the equation y(r)exp(fa(t)dt)=c
or

_y(1)=cexp(—[a(1)dt). 7)

Equation (7) is said to be the general solution of the homogeneous equa-
tion since every solution of (4) must be of this form. Observe that an arbi-
trary constant ¢ appears in (7). This should not be too surprising. Indeed,
we will always expect an arbitrary constant to appear in the general solu-
tion of any first-order differential equation. To wit, if we are given dy/dt
and we want to recover y(7), then we must perform an integration, and
this, of necessity, yields an arbitrary constant. Observe also that Equation
(4) has infinitely many solutions; for each value of ¢ we obtain a distinct
solution y (7).

Example 1. Find the general solution of the equation (dy /dr)+21y =0.
Solution. Here a(1)=2t so thaly(t)=cexp(— f21dt)=ce"2.

Example 2. Determine the behavior, as — o0, of all solutions of the equa-
tion (dy /dt)+ ay =0, a constant. .

Solution. The general solution is y()=c exp( - f a dt) =ce~“. Hence if

a <0, all solutions, with the exception of y =0, approach infinity, and if a
>0, all solutions approach zero as r— 0.

4



1.2 First-order linear differential equations

In applications, we are usually not interested in all solutions of (4).
Rather, we are looking for the specific solution y(z) which at some initial
time ¢, has the value y,. Thus, we want to determine a function y(7) such
that

L ray=0  y(t)=y0 ®)

Equation (8) is referred to as an initial-value problem for the obvious rea-
son that of the totality of all solutions of the differential equation, we are
looking for the one solution which initially (at time #,) has the value y,. To
find this solution we integrate both sides of (5) between ¢, and ¢. Thus

4
f ln|y(s)|ds fa(s)ds
to
and, therefore
() |
Y (1)
Taking exponentials of both sides of this equation we obtain that

;)((t:)) =exp(—f”a(s)ds)

In|y (2)|=In|y(2,)|=1n —j;la(s)ds.

or

y(1) ‘
e exp(f a(s)ds) =

o

The function inside the absolute value sign is a continuous function of
time. Thus, by the argument given previously, it is either identically +1 or
identically —1. To determine which one it is, evaluate it at the point 7y;
since

)’(’o) % 30
e exp(flo a(s)ds) =
we see that :
y(1)
o) exp(f a(s)ds)
Hence

f’a(s)ds).

‘o

fla(s)ds) =y0exp( -

L)

Y=y () exp(—
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Example 3. Find the solution of the initial-value problem
%+(sin1)y=0, y(0)=3.

Solution. Here a(f)=sint so that

'
y(t)'—' %CXP(—Lsinsds)= :;_e(cosl)~l.

Exai ple 4. Find the solution of the initial-value problem

dy e 8
E+e y=0, y(H)=2.

Solution. Here a(1)= e” so that
y(t)=2exp(—fle‘2ds).
: 1

Now, at first glance this problem would seem to present a very serious dif-
ficulty in that we cannot integrate the function e directly. However, this
solution is equally as valid and equally as useful as the solution to Example
3. The reason for this is twofold. First, there are very simple numerical
schemes to evaluate the above integral to any degree of accuracy with the
aid of a computer. Second, even though the solution to Example 3 is given
explicitly, we still cannot evaluate it at any time 7 without the aid of a table
of trigonometric functions and some sort of calculating aid, such as a slide
rule, electronic calculator or digital computer.

We return now to the nonhomogeneous equation
dy :
—+a(t)y=>5b(1).
—+a(1)y=b(1)

It should be clear from our analysis of the homogeneous equation that the
way to solve the nonhomogeneous equation is to express it in the form

‘—‘;; (“something”) = b(7)

and then to integrate both sides to solve for “something”. However, the ex-
pression (dy /dt)+ a(t)y does not appear to be the derivative of some sim-
ple expression. The next logical step in our analysis therefore should be the
following: Can we make the left hand side of the equation to be d/dr of
“something”? More precisely, we can multiply both sides of (3) by any
continuous function u(7) to obtain the equivalent equation

W02+ a(0) w1y = p(0b(0). PR



1.2 First-order linear differential equations

(By equivalent equations we mean that every solution of (9) is a solution of
(3) and vice-versa.) Thus, can we choose p(r) so that p(z)(dy/dt)+
a(t) u(2)y is the derivative of some simple expression? The answer to this
question is yes, and is obtained by observing that
dy d
% u(t)y=#(t);1),—) + 77

Hence, p()(dy /dt)+ a(r) p(r)y will be equal to the derivative of u(¢)y if
and only if du(?)/dt=a(t)u(z). But this is a first-order linear homoge-
neous equation for u(7), i.e. (du/dt)—a(t)p=0 which we already know
how to solve, and since we only need one such function u(7) we set the
constant ¢ in (7) equal to one and take

p.(t)=exp(fa(t)dt).
For this p(?), Equation (9) can be written as
2 4(0)y = (Db (1). (10)

To obtain the general solution of the nonhomogeneous equation (3), that
is, to find all solutions of the nonhomogeneous equation, we take the indef-
inite integral (anti-derivative) of both sides of (10) which yields

()= [ w(Ob(r)di+c
or

=—;%t—)-(f/.L(t)b(t)dt+c)=exp(——fa(t)dt)(f p.(t)b(t)dt+c). (11)

Alternately, if we are interested in the specific solution of (3) satisfying
the initial condition y(#,)=y,, that is, if we want to solve the initial-value

problem
dy
E+a(t)y=b(t), (1) =»o

then we can take the definite integral of both sides of (10) between ¢, and ¢
to obtain that
t
w(0)y = r(to)yo= [ n()b(s)ds

o

or
1

(mmm+f%mmwm) (12)

Remark 1. Notice how we used our knowledge of the solution of the ho-
mogeneous equation to find the function u(#) which enables us to solve the
nonhomogeneous equation. This is an excellent illustration of how we use
our knowledge of the solution of a simpler problem to solve a harder prob-
lem.



