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Preface

In the last 10 years, the threads of chaos and nonlinear dynamics have
spread across the scientific disciplines like a spider’s intricate web.
Chaos and nonlinear dynamics have provided new theoretical and
conceptual tools that allow us to capture, understand, and link together
the surprisingly complex behaviors of simple systems—the type of
behavior called chaos—in essentially every field of contemporary
science.

The universality of chaos is both intriguing and puzzling. What is
it about the behavior of a convecting fluid, for example, that makes its
transition from simple, regular behavior, to complex, chaotic behavior
both qualitatively and quantititatively identical to the way an oscillating
electrical circuit makes the same kind of transition? The theory of
chaos clearly needs to be based on the fundamental laws of physics,
chemistry, and biology. In a sense, however, the theory needs to
transcend those laws to explain the universality of chaos. New ideas,
new language, and new ways of reasoning about complex behavior are
needed. These ideas, this language, and those modes of reasoning are
what chaos theory in particular and nonlinear dynamics in general
provide.

The study of nonlinear dynamics is by no means complete, but the
field has now matured to the point that it makes sense to bring together
in one book the essential elements. The foundations of the theory seem
to be firmly in place, and the outlines of the final structure to be erected
upon this foundation can now be discerned. This book provides an
introduction to chaos and nonlinear dynamics for scientists and engi-
neers who have little or no previous experience with the field. I have
assumed no background other than some familiarity with introductory
college-level physics and with calculus through elementary differential
equations. After completing this book, the reader should be ready to
grapple with the current literature in chaos.

Most of us who have been actively engaged in the study of chaos
have learned the "tricks of the trade” in a rather piecemeal fashion:
some abstract concepts from nonlinear mathematics, some stability
theory from the engineers and most of our new ideas from the research
literature. When I wanted to introduce my students to chaos, no book
provided all of the needed background. Thus, I have written this book
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both to bring together the essentials of the field and to provide the
background for those scientists, engineers, and students who want to
discover what the excitement in chaos is all about.

Historically, the study of chaos is strongly rooted in the mathe-
matical study of nonlinear dynamics, going back, at least, to the pio-
neering work of Henri Poincaré, the noted French mathematician
(1854-1912). This heritage has bequeathed to chaos jargon that is
(some would say excessively) mathematical in nature. In this book I
have approached chaos from the point of view of a scientist who wants
to describe and understand the complex behavior of real systems. Thus,
I have chosen to introduce the concepts of chaos as descriptors of the
behavior of actual systems rather than as abstract mathematical ideas.
As these descriptions are refined, we recapture, I hope with more
physical intuition and insight, the mathematical basis of those concepts.

Nonlinear dynamics and chaos, like most of contemporary physical
science and engineering, is intimately tied to mathematics. To apply
the concepts of nonlinear dynamics to her or his field, a scientist,
engineer, economist, social scientist or physician must come to grips
with at least some of the formalism and quantitative formulations of
nonlinear dynamics. The concepts without the quantification are
fruitless; likewise, quantification without the guide of concepts is blind
number shuffling. Both aspects are necessary. Anyone wishing to
make use of nonlinear dynamics must be willing to make an investment
of time and energy to master some of the formalism. I have designed
this book to provide an introduction to what I believe are the key parts
of that formalism.

I believe that many scientists and their students are most com-
fortable with the traditional differential equations approach to the study
of dynamics, and the standard undergraduate training in science and
introductory calculus provides ample practice in solving (in closed
form) and interpreting linear differential equations. Thus, I have begun
the discussion from that point of view. However, the analytic results,
which dominate the traditional approach to the study of linear systems,
quickly become useless when dealing with nonlinear systems.
Thereore, I gradually introduce the methods used to describe and think
about these nonlinear systems. These methods generally require less
formal mathematical manipulation than do the traditional analytic
methods, but they force us to do more thinking.

I mentioned above the background assumed of my readers:
familiarity with college-level introductory physics and an acquaintance
with calculus through elementary differential equations. Certain
portions of the book do indeed stretch or even exceed those prerequi-
sites. I have marked the title of those sections with an asterisk. The
reader who feels that those sections exceed her or his mathematical
fortitude or technical background can pick up the key ideas by reading
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the introductory paragraphs of those sections. There 1 have tried to
give an elementary statement of what the more elaborate mathematics
does with more rigor and generality. These more advanced sections
are self-contained so that the reader who skips the mathematical
treatment can still follow the flow of argument in the remainder of the
book.

The results of research in science education agree with the
reflections of experienced teachers: students, be they young people or
experienced scientists venturing into new fields, must become actively
engaged with the material they are attempting to learn. The readers of
this book are no exception. To provide for that engagement, I have
included some exercises in most sections that should be useful both for
classroom instruction and for the reader who wants to tackle chaos
directly. At the end of each section are references for further reading
and some computer exercises. By working through these exercises,
both with paper and pencil and with the computer, and by reading about
the applications of nonlinear dynamics to various fields of science, the
reader can begin to become engaged with the field.

The first two chapters introduce the key concepts, jargon, and
important questions raised by chaos by looking at three simple systems
that exhibit chaotic behavior: a simple electrical circuit, a model of
biological population dynamics, and a set of differential equations
modeling fluid convection. These examples were chosen because they
show nearly the full spectrum of chaotic behavior, but they are suffi-
ciently simple so that the basic science behind each of them can be
casily understood. The surprise is that these simple systems exhibit
exceedingly complex behavior. Simplicity of structure does not
guarantee simplicity of behavior. By comparing the chaotic behavior
of these systems, we recognize both qualitative and quantitative sim-
ilarities. These similarities are quantified by the numbers first "dis-
covered" by Feigenbaum, and I discuss carefully how well these
numbers describe actual systems.

The remainder of the book then tackles the problem of building a
theory of chaotic behavior. The key conceptual tool is the description
of asystem’s behavior in state space, a geometrical construction similar
to the phase space description familiar from classical mechanics and
statistical mechanics. Poincaré sections further simplify the description
of the dynamical behavior and allow conceptually simple, but analyt-
ically powerful means of classifying the types of dynamical behavior.
We make contact with the mathematical scheme of iterated maps from
these constructions. I spend some time developing the theory of these
maps since they have been important in the historical development of
the theory of chaos, and they elegantly and simply illustrate many of
the fundamental types of chaotic behavior. Geometrical notions lead
to a classification of the so-called routes to chaos and an understanding
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of how the system’s behavior evolves as its environment, as described
by suitable parameters, changes. I discuss in some detail the quasi-
periodic, intermittency, and crisis routes to chaos.

Although the initial discussion focuses on dissipative systems—
systems that "run down" unless provided with an external source of
energy—since these systems are better models of most of the real
world, I have included an introduction to the chaotic behavior of
Hamiltonian systems—systems whose energy is conserved. Chaotic
Hamiltonian systems are important theoretically and are crucial for an
understanding of "quantum chaos," a subject 1 treat in the last chapter.

I then turn to the problem of describing chaos quantitatively.
Introducing the notions of Lyapunov exponents, fractal dimensions,
and various kinds of correlation exponents, I show how each of these
quantifiers can be determined, at least in principle, from an analysis of
a time series of sampled values of some dynamical variable of the
system. All of these quantifiers are related, and some obey universal
scaling laws, which tell how they vary as the system becomes more
chaotic. I present a case history of the computation of the widely used
correlation dimension to illustrate some of the pitfalls of quantifying
chaos.

Recent research has emphasized that these simple descriptors are
really only average quantities and that actual chaotic systems show a
distribution or spectrum of values for each of these. For the case of
fractal dimensions, these chaotic systems are described by what are
called "multifractals.” There is some indication that these distributions
are themselves universal. An elegant thermodynamic formulation of
chaotic behavior then leads naturally to a description of these distrib-
utions.

The penultimate chapter looks at systems with sufficient spatial
extent to exhibit interesting patterns. In recent years there has been
dramatic progress in understanding the physics of pattern formation
and the related behavior called spatiotemporal chaos. The connection
between pattern formation and chaotic dynamical behavior is outlined.
I believe that this chapter is the only treatment of pattern formation at
this level of presentation. Pattern formation is certainly one of the most
important aspects of nonlinear science. Newcomers to the field should
certainly be made aware of the fundamental issues.

Unfortunately, fluid dynamics and transport phenomena have all
but disappeared from the standard undergraduate physics curriculum
in the United States. Thus, I have included a brief introduction to these
subjectsin Chapter 11. The treatment is hardly exhaustive and provides
just enough background so the reader can appreciate the fundamental
issues in pattern formation and dissipative structures.
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In the final chapter, I turn to a discussion of the problem of chaos
and quantum mechanics. Quantum systems show peculiar behavior
when their classical (non-quantum) counterparts display chaos.
However, there are good reasons to believe that "pure” chaos cannot
occur in quantum systems. What then is the connection between chaos
and this peculiar behavior? Along with speculations about quantum
chaos, I discuss the relationship between chaotic behavior and the more
general notions of "complexity" as well as the import of chaos both for
the technical development of science and its philosophical implica-
tions.

I have included several appendices, which gather together for
convenient reference some of the technical background needed for
understanding chaos and nonlinear dynamics. Fourier analysis and
bifurcation theory are crucial in many aspects of nonlinear dynamics.
Appendices A and B provide brief introductions to these subjects. In
Appendix C, I present the details of the development of the now leg-
endary Lorenz Model, starting from the fundamental equations of fluid
flow and thermal energy diffusion. Appendix D gives an introduction
to the scientific research literature on chaos. Appendix E contains the
listings of some simple computer programs to illustrate the dynamics
of the logistic map model. These programs can serve as useful examples
to guide you in creating your own computer programs.

Let me describe the structure of the book. Each chapter is broken
down into sections. Equations and exercises are numbered according
to the section in which they occur. For example, Eq. (3.4-1) is the first
equation in Chapter 3, Section 4. Section numbers are indicated on the
top of even-numbered pages. Figures are numbered consecutively in
each chapter. References to books are given with the author’s name
and the year of publication in square brackets, for example, [Gleick,
1987]. New concepts and terms of technical jargon are set in bold
italics where they first appear. Double-line boxes set off important
results and definitions. Technical comments and asides are indented.

References to papers and articles are cited by giving the initial
letters of the family names of the first three authors, or the first three
letters of a single author’s family name, and the last two digits of the
year of publication. For example, (HIL88) refers to a paper by Hilborn
published in 1988. I trust that this citation method gives more infor-
mation than just a numerical reference to a citation at the end of the
chapter, without burdening the text with footnotes containing the full
citation. The complete reference citations are given at the end of the
first chapter in which that reference appears. All references cited are
gathered together in an alphabetical listing at the end of the book.
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Throughout the book I have relied on simple (usually mathemat-
ical) models to illustrate new concepts. Some readers may find this
approach frustrating. They may want more discussion of actual
applications. I have described applications in several sections, but
much of the narrative rides on these simple models. There are two
reasons for this. First, these simple models provide us with well-
controlled and well-defined "laboratories" for trying out and exploring
the many unfamiliar and, in some cases, new concepts of nonlinear
dynamics. We can ignore for the moment all the complexities and
approximations associated with systems in the "real world." Second,
many of the features associated with complex behavior in nonlinear
dynamics are in fact independent of the details of the system being
investigated. Hence, we can use what we learn about the dynamics of
simple mathematical models to help us at least categorize and describe
and often understand the behavior of lasers, heart beats, and convecting
fluids. The use of these simple models is part and parcel of the
methodology of nonlinear dynamics.

This book did not appear spontaneously out of (dare I say) the void
of chaos. My thinking and writing about chaos and nonlinear dynamics
have been influenced by many books. The text by Schuster—see the
citation for [Schuster, 1988] at the end of Chapter 1—although it
appeared in print after I had begun writing this book, shares much of
the same conceptual strategy, but is written at the graduate level in
physics.

I want to say a bit about what this book is not (reviewers take note).
The history of nonlinear dynamics and chaos is not explored here except
by a few references to early developments. These references (and all
others in this book) are the ones I and my students have found useful.
They do not necessarily point to the original creators or discoverers.
Sorting out and understanding this history will take the skills of a
disciplined historian of science. Also, this book is not a scholarly
monograph on nonlinear dynamics and chaos. I have not proved many
(or even most) of the theorems, nor I have explored all of the ramifi-
cations of the results stated here. My purpose is frankly (and, I believe,
laudably) pedagogical. WhatIhave tried todoistoprovide an overview
and a series of explanations of what the science of nonlinear dynamics
and chaos is all about and what it does and what it (yet) cannot do.

Amherst, Mass.
October, 1992 R.C.H.
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1
Three Chaotic Systems

1.1 Prelude

Chaos is the term used to describe the apparently complex behavior of
what we consider to be simple, well-behaved systems. Chaotic
behavior, when looked at casually, looks erratic and almost
random—almost like the behavior of a system strongly influenced by
outside, random “noise” or the complicated behavior of a system with
many, many degrees of freedom, each “doing its own thing.”

The type of behavior, however, that in the last 10 years has come
to be called chaotic arises in very simple systems (those with only a
few active degrees of freedom), which are almost free of noise. In fact,
these systems are essentially deterministic; that is, precise knowledge
of the conditions of the system at one time allow us, at leastin principle,
to predict exactly the future behavior of that system. The problem of
understanding chaos is to reconcile these apparently conflicting
notions: randomness and determinism.

Thekey element in this understanding is the notion of nonlinearity.
We can develop an intuitive idea of nonlinearity by characterizing the
behavior of a system in terms of stimulus and response: If we give the
system a “kick’ and observe a certain response to that kick, then we
can ask what happens if we kick the system twice as hard. If the response
is twice as large, then the system’s behavior is said to be linear (at least
for the range of kick sizes we have used). If the response is not twice
as large (it might be larger or smaller), then we say the system’s
behavior is nonlinear. In an acoustic system such as a record, tape, or
compact disc player, nonlinearity manifests itself as a distortion in the
sound being reproduced. In the next section, we will develop a more
formal definition of nonlinearity. The study of nonlinear behavior is
called nonlinear dynamics.

Why have scientists, engineers, and mathematicians become
intrigued by chaos? The answer to that question has two parts: (1)
The study of chaos has provided new conceptual and theoretical tools
enabling us to categorize and understand complex behavior that had
confounded previous theories; (2) chaotic behavior seems to be
universal—it shows up in mechanical oscillators, electrical circuits,
lasers, nonlinear optical systems, chemical reactions, nerve cells,



