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Preface

Functional analysis, partly because of its many applications, has
become a very popular mathematical discipline. My own lectures on
the subject have been attended by applied mathematicians, prob-
abilists, classical and numerical analysts, and even an algebraic
topologist. This book grew out of my attempts to present the mate-
rial in a way that was interesting and understandable to people with
such diverse backgrounds and professional goals. I have aimed at an
audience of professional mathematicians who want to learn some
functional analysis, and second-year graduate students who are tak-
ing a course in the subject. The only background material needed is
what is usually covered in a one-year graduate level course in
analysis, and an acquaintance with linear algebra. The book is de-
signed to enable the reader to get actively involved in the develop-
ment of the mathematics. This can be done by working the starred
problems that appear at the end of nearly every section. I often refer
to these exercises during subsequent discussions and proofs. So-
lutions to those starred problems appearing in the introductory chap-
ters (Chapters 1-4) can be found in Appendix A.

vii



viii PREFACE

The introductory chapters contain the basic facts from the theory
of normed spaces. Here the mathematics is developed through the
discussion of a sequence of gradually more sophisticated questions.
We begin with the most naive approach of all. In Sections 2 and 3 of
Chapter 1, we study finite dimensional normed spaces and ask which
of our results are true in the infinite dimensional case. Of course this
approach does not lead very far, but it does guide us to some useful
facts. In order to carry our discussion of normed spaces further, we
take a hint from the history of the subject and learn something about
integral equations. This is done in Chapter 2, where we also discuss
the Riesz theory of compact operators. A key result in that theory is
the theorem associating to each compact operator a pair of com-
plementary subspaces. At this point we inquire into the connection
between such pairs of subspaces and continuous projection
operators and ask if every closed linear subspace of a normed space
has a complement. The discussion of these questions, which oc-
cupies some of Chapter 2 and most of Chapter 3, leads us to some
very deep theorems. It also exhibits the importance of continuous,
linear functionals.

Chapter 4 deals with the weak topology of a normed space, and it
also contains an introduction to the theory of locally convex spaces.
The latter material is used to prove that a Banach space whose unit
ball is compact for the weak topology is reflexive. It is used again in
Chapter 5 and in Chapter 7.

One advantage of the approach sketched above is that the impor-
tant theorems stand out as those which must be appealed to again
and again to answer our questions. It should also be mentioned that
several of the questions discussed in the text have been the subject
of a great many research papers. I have made no attempt to give an
account of all of this work. However, the closely related problems of
characterizing reflexive Banach spaces and characterizing those
Banach spaces that are dual spaces are discussed further in Appen-
dix B.

The last three chapters of the book are independent of one
another, and each deals with a special topic. In Chapter 5, John
Kelley’s elegant proof of the Krien—Milman theorem is presented.
That theorem is used to settle the question, Is every Banach space
the dual of some other Banach space? (See Chapter 5 for a more
precise statement.) Chapter 5 also contains the theorem of Eberlein.
I have presented Eberlein’s original proof of his famous theorem
because I feel that it gives insights into this result not found in more
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modern proofs. It does not yield the most general result known; but,
I feel, the gain in insight is well worth the slight loss in generality.
Chapter 6 contains a sample of the interesting, and sometimes sur-
prising, ways that functional analysis enters into discussions of
classical analysis. This material can be read immediately after Sec-
tion 1 of Chapter 4. Distributions are discussed in the last chapter.
The Fourier transform is treated early (Section 3) because it requires
less machinery than some of the other topics. However, Fourier
transforms are not used in any subsequent section. Applications of
the theory of distributions to harmonic analysis (Section 3) and to
partial differential equations (Section 5e) are also discussed.
Readers who are interested only in distributions can read Chapter 7
immediately. They will however occasionally have to go back to
Chapter 4 and read some background material.

I would like to take this opportunity to thank Andrea Blum for
writing Appendix A. She patiently solved each of these problems
and proved that they really can be done. I discussed my ideas for a
book with R. P. Boas of Northwestern University and John S.
Lomont of the University of Arizona. They each made valuable
suggestions, and it is my pleasure now to thank them both. I would
also like to thank Louise Fields for the excellent job she did typing
the final version of the manuscript.

Remarks on Notation. The chapters are divided into sections.
If in a discussion, in say Chapter 4, I want to refer to Theorem 1 in
Section 3 of that same chapter, I write **Section 3, Theorem 1.”” If in
that same discussion I want to refer to Theorem 1 in Section 3 of
some other chapter, say Chapter 1, then rather than say ‘“Theorem 1
of Section 3 to Chapter I,”” I simply write **Section 1.3, Theorem 1.”’
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CHAPTER 1

Preliminaries

Our treatment of functional analysis begins with a long discussion
of normed vector spaces. The two most important classes of normed
spaces are the Hilbert spaces and the Banach spaces. Although every
Hilbert space is a Banach space, the two classes are always treated
separately. The concept of a Hilbert space has its origin in the papers
of David Hilbert on the theory of integral equations, and it is well
known that Hilbert was attracted to this area by the pioneering work
of I. Fredholm. Hilbert space theory, by which I mean not only the
study of these spaces but also of the continuous, linear operators on
them, is one of the most important branches of functional analysis.
However, to do the subject justice, we would have to double the length
of this book and so, except for an occasional remark, we shall say no
more about it.

Stefan Banach was not the first mathematician to investigate the
spaces that now bear his name. He did, however, make many impor-
tant contributions to their study. His book, “ Theory of Linear Opera-
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2 1. PRELIMINARIES

tions ” [2], contains much of what was known about these spaces at the
time of its publication (1932), and some of the deepest results in
the book are due to Banach himself. The strange title is explained in
the preface. Banach writes: “ The theory of operations, created by V.
Volterra, has as its object the study of functions defined on infinite
dimensional spaces.” He goes on to discuss the importance of this
theory and some of its applications. Now Volterra is recognized, along
with Fredholm, as one of the founders of the modern theory of integral
equations, and it was undoubtedly his work in this area that led him to
the theory of operations.

One fact is clear from our epigrammatic sketch of the history of the
theory of normed spaces, and that is that a large portion of this theory
has its roots in the study of integral equations. This fact is worth
keeping in mind.

1. Norms on a Vector Space

We shall begin our formal discussion of normed spaces here. In all
that follows R and C will denote the field of real numbers and the field
of complex numbers, respectively. We shall always assume that these
two fields have their standard, metric, topologies, and all of the vector
spaces that we consider will be defined over one or the other of these
two fields. Sometimes it is not necessary to specify over which of these
fields a certain vector space is defined. In that case we shall speak of a
vector space over K.

Definition 1. Let E be a vector space over the field K. A nonnega-
tive, real-valued function p on E is said to be a norm on E if:

(@) p(x+y) <p(x)+ p(y) for all x, and y in E;
(b) plax)= |o|p(x) for all x in E and all a in K;
() p(x)=0if, and only if, x = 0.

If p is a norm on E it is customary to denote, for each x in E, the
number p(x) by |x|. A vector space E on which a norm is defined will
be called a normed space. If we want to emphasize the norm, say |- |,
on E, we shall speak of the normed space (E, ||-|).

There is a natural metric associated with (E, ||-|); we define the
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distance between any two points x and y of E to be ||x — y|. This
metric gives us a topology on E that we call the norm topology of
(E, |- ||), or the topology induced on E by ||-|. Whenever we speak of,
say, a norm convergent sequence in E, or a convergent sequence in
(E, |]), we mean a sequence of points of E that is convergent for the
metric topology induced on E by ||- |. Similarly, we shall speak of norm
compact subsets of E (or compact subsets of (E, |-||)), of norm contin-
uous functions on E, etc.

The plane (i.e., the vector space over R of all ordered pairs of real
numbers) with |(x, y)| defined to be the square root of x* + y? is,
perhaps, the most familiar example of a normed space. More generally,
for any fixed, positive integer n, the vector space over K of all ordered
n-tuples of elements of K (we shall call it K") can be given a norm by
defining ||(x,, x5, ..., X,)|| to be the square root of 3"_, |x;|*. This
will be called the Euclidean norm on K".

It is easy to see that, if there is one norm on a vector space E, then
there are infinitely many of them; for if ||-|| is a norm on E then so is
|||, where, for the fixed positive real number A and each x in E, we
define ||x||, to be 4||x||. There may be other norms on (E, ||-||) besides
those that can be obtained from ||-| in this way. On the vector space
R?, for example, we have defined |(x, y)|| to be the square root of
x% + y%. But we could also define a norm on this space by taking
[(x, y)|: tobe |x| + |y|, or by taking ||(x, y)|, to be the maximum of
the numbers |x|, |y|. Now in the applications of the theory
of normed spaces one is often concerned with a family of continuous,
linear operators on a specific normed space. Here we are using the
term “linear operator ” to mean a linear map from a vector space into
itself. Clearly the set of all continuous, linear operators on a given
normed space is determined by the topology on that space and not by
the particular norm that induces that topology. So it seems reasonable
to say that two norms on a vector space are equivalent if they induce
the same topology on the space. This idea is worth further discussion.

Given a normed space (E, |-||) and a point x, in E, the map
¢(x) = x + x, is clearly onto, one-to-one, and continuous. It also has
a continuous inverse: ¢~ !(x) = x — x,. So ¢ is a homeomorphism
from E with the norm topology onto itself. Since the point x, is arbi-
trary, this means that the neighborhoods of any point of E are just
translates of the neighborhoods of zero. Hence we may compare the
topologies induced on E by two different norms by just comparing the
systems of neighborhoods of zero in these two topologies.
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Definition 2. Let (E ) be a normed space. The set {x in
E||x| < 1} is called the unit ball of E. We shall denote it by #, or

A1([1-1)

If r#, is taken to mean {rx|x in #4,}, then any neighborhood of
zero contains some set in the family {r#, |r in R, r > 0}.

1 [|-]|2 be
,,and we

Definition 3. Let E be a vector space over K and let |-
two norms on E. We shall say that |||, is weaker than |||

shall write ||, <|-|,, if there is a positive number A such that
AB.(|-]2) = 2.(]|*||1)- We shall say that |||, and ||, are equivalent,
and we shall write ||-|, = ||,, if we have both |||, <|-|, and
-l <112

Suppose that ||y, |||, are two norms on E with ||, < |-|,. Let
4 be a positive number such that A%,(||-|,) = #,(/-||,). For any non-
zero vector x in E we have |Ax|x|;'||; < 1. Hence | x|, < |x|, for
all nonzero elements of E, and clearly this holds for the zero vector
also. Thus we can state: Two norms |- ||, and |||, on a vector space E
are equivalent iff there are positive constants A and p such that ||x||, <
x|, < u|x| for every x in E.

The identity map on a vector space E, I, is defined by the equation
I; x = x for all x in E. This map is, of course, an isomorphism from the
vector space E onto itself. If |||, and ||, are two norms on E, then
the discussion above shows that |- H , is weaker than ||+ ||, iff the map I,
is continuous from (E ) onto ( 1), and that || ||, is equivalent
to|-|,iff Ipisa homeomorphlsm between these two spaces.

Definition 4. Let (E,, |-|,)and (E,, |-|.) be two normed spaces
over the same field. Let T be an isomorphism from E, onto E,. We
shall say that T is a topological isomorphism if it is a homeomorphism
from (E,, |-|,) onto (E,, |-[,).

We note that two norms |- | ,, ||, on a vector space E are equiva-
lent iff the identity map is a topological isomorphism from (E
onto (E, ||-||2)-
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EXERCISES 1

A number of useful facts, facts that will be referred to later on in the

text, are scattered among the exercises. Any problem that is referred to
later on is marked with a star. The number of starred problems will
decrease as the material gets more difficult.

*]1.

*2.

x4,

Let (E, ||-||) be a normed space, let {x,} be a sequence of points of
E, and suppose that this sequence converges to a point x,, of E for
the norm topology. Show that lim|x, || = [x, |

Let E, F be two normed spaces over the same field and let u be a

linear map from E into F.

(a) Show that u is continuous on E iff it is continuous at zero.

(b) Show that u is continuous on E iff there is a constant M such
that |[u(x)|| < M for all x in the unit ball of E. Hint: If u is
continuous at zero but no such M exists, then for each posi-
tive integer n we can find a point x, in E such that |x, || < 1
and [u(x,)| =

(c) Show that u is continuous on E iff there is a constant M such
that |u(x)|| < M|x|| for all x in E.

We have defined three different norms on the vector space R?.

Sketch the unit ball of each of these three normed spaces. Show

that any two of our three norms are equivalent.

Let E, F be two normed spaces over the same field and let u be a

topological isomorphism from E onto F. Denote the norm on E

by || ||¢ and the norm on F by ||.

(a) For each x in E define ||x||| to be |u(x)|;. Show that
[||-]] is a norm on E and that it is equivalent to |- .

(b) For each y in F define |||y| | as follows: Let x be the unique
element of E such that u(x) = y and take ||y| | to be ||x| .
Show that ||-|/| is a norm on F and that it is equivalent to
I-1F-

(c) Suppose now that E is just a vector space over K, F is a
normed space over K, and u is an isomorphism from E onto
F. The function |||-|| defined on E as in (a) is still a norm
on E. Show that if E is given this norm then u becomes a
topological isomorphism from E onto F. If E is a normed
space and F is just a vector space then similar remarks can
be made about the function defined on F as in (b).
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x5. Let E, F be two normed spaces over the same field and let u be a
topological isomorphism from E onto F. If |-|; and ||, are
norms on E and F, respectively, that are equivalent to the original
norms on these spaces, show that u is a topological isomorphism
from (E, |-|g) onto (F, |-|f).

2. Finite Dimensional Normed Spaces

Before continuing with our general discussion it is instructive to
investigate the properties of a special class of normed spaces. We have
in mind spaces (E, |- |) for which E is a finite dimensional vector space
over K. Such spaces do arise in applications.

Recall that a vector space over K is said to be finite dimensional if,
for some nonnegative integer n, it has a basis containing n elements;
the number n is called the dimension of the space. We allow n to be
nonnegative in order to include the trivial vector space, i.e., the vector
space over K whose only element is the zero vector. A basis for this
space is, by convention, the empty set. Hence the trivial vector space
has dimension zero. It is easy to see that any finite dimensional vector
space over K can be given a norm. In fact

Theorem 1. Any two norms on a finite dimensional vector space
are equivalent.

Proof. Let F be a finite dimensional vector space over K and let
||l and |||, be two norms on F. Choose a basis x,, x,, ..., x, for F
and define a third norm, ~|, as follows: For each x in F there is a
unique set of scalars a,, a5, ..., , such that x = ) «;x;. Take |x| to
be the maximum of the numbers |a, |, |a,], ..., |a,|. Suppose that
each of the norms |||, and ||, is equivalent to |-|. Then there are
positive scalars m;, M, and m,, M, such that

my | x| < [|x[, <M, |x]| and  my|x| < x|, < M;|x|
for each x in F. It follows that
(ma/My)[x[ly <m,|x| < x|, < My|x| < (My/my)||x|,

for each x in F, and hence ||, and ||-||, are equivalent.
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Now let |- denote either ||-|, or ||| ,. We shall show that |- | is
equivalent to |-|. If x =) a;x; then
Il < X2 fagl ;1 < 1= G2 ;-
Since (Y. ||x; ) is a constant we see that ||| is weaker than |-| on F.
Let S={x in F||x| = 1} and choose a sequence {y,} of points of S
such that lim||y, | = inf{/|x|| | x in S}. For each y, there are scalars a,;,

Oizs ---5 Oy, SUch that y, =) a;x;. Since each y, € S, |;| <1 for
j=1,2, ..., n and every k. These inequalities imply that there is a
subsequence of {y,} (call it {y,} also) such that lim &, ; exists and equals,
say, a;forj=1,2,...,n.Lety = Z a;x;and note that {y,} converges to
y for |-|, ie, lim|y — y,| =0. It follows that |y| =1 (Exercises I,
problem 1) and hence, in particular, y # 0.

At this point we make an observation. Let A4 be the maximum of the
numbers ||x;|,j= 1,2, ..., n. If a positive number ¢ is given then the
elements x =) f;x; and z =) y;x; of F will satisfy the inequality
[x —z| <& if |B; —v;| <¢&/An for each j, ie., if |x — z| < ¢/An. This
fact, together with the remarks contained in the last paragraph, implies
that lim||y, | = ||y. So |y| = inf{|x|||x in S} and since y # O this
infimum is positive. Now if x is any nonzero element of F, then x/ | x|
is in S and hence ||x| > [y |x|. It follows that |-| is weaker than |- ||
on F.

Corollary 1. If two finite dimensional normed spaces over K have
the same dimension, then they are topologically isomorphic.

Proof. 1t suffices to show that if a normed space (F, ||) over K
has (finite) dimension n then it is topologically isomorphic to the space
K" with the Euclidean norm. There is an isomorphism u from F onto
K". We can use this map to define a new norm on F as follows: For
each x in F let ||x||| be the norm of u(x) in K" (Exercises 1, problem
4a). When F is given this new norm u becomes a topological isomor-
phism (Exercises 1, problem 4c). However, Theorem 1 shows that
[|-]I| is equivalent to ||| on F. Hence u is a topological isomorphism
from (F, ||-|) onto K" (Exercises 1, problem 5).

Theorem 1 has two other useful corollaries. In order to state them
we need some more terminology. The proofs of these corollaries will be
left to the reader (see problem 1 below). We have already noted that a
normed space (E, ||-||) has an associated metric. If E, with this metric,



