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Preface

This little dictionary of algebraic geometry is intended to be useful mainly to under-
graduate and Ph.D. students. For each word listed in the dictionary, we have given
the definition, some references, and the main theorems about that term (without the
proofs). Some terms from other subjects close to algebraic geometry have also been
included. The dictionary has been conceived to help beginners who know some ba-
sic facts on algebraic geometry, but not every basic fact, to follow seminars and read
papers by giving them basic definitions and statements and providing them with a
glimpse of what is nowadays considered to be the basic notions of algebraic geometry.
For the sake of simplicity, in some items (for instance algebraic surfaces and Abelian
varieties), we have considered only the case of the varieties over the field of complex
numbers.

I warmly thank Giorgio Ottaviani for many helpful discussions on algebraic geometry
and his invaluable support during all the years I have been in Firenze and, in par-
ticular, during the writing of this book. I thank also Roberto Pignatelli for a helpful
suggestion.

Firenze, December 2013 Elena Rubei
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AP(X)

APA (X)

b(X, R)

b.p.f.
CHP?(X)
Cli(X)

C®(X, E)

8ap
(D)

T fosf
|D|, L(D)
PL

r

94

G(k, V), G(k, P)

Hi (Xr R)) hi(xl R)

H'(X,R), H'(X,R)

We denote by A the affine space of dimension n over K.

For any C* manifold X, A?(X) denotes the vector space of the C* p-forms on
X.

For any almost complex manifold X (see “Almost complex manifolds, holomor-
phic maps, holomorphic tangent bundles”), AP4(X) denotes the vector space
of the C* (p, q)-forms on X.

For any topological space X and ring R, (X, R) (Betti number) denotes the
rank of H;(X, R); it is also denoted by h;(X, R); see “Singular homology and
cohomology”.

The abbreviation b.p.f. stands for “base point free”, see “Bundles, fibre -”.

For any algebraic variety X, CH?(X) denotes the p-th Chow group of X; see
“Equivalence, algebraic, rational, linear -, Chow, Neron-Severi and Picard
groups”.

For any algebraic variety X, CI(X) denotes the divisor class group of X; see
“Divisors”.

For any C™ vector bundle E on a C*™ manifold X, C®(X, E) denotes the set of
the C™ sections of E; see “Bundles, fibre -”.

8, g stands (as usual) for the Kronecker delta.

For any Cartier divisor D, (D) denotes the line bundle associated to D; see “Di-
visors”.

See “Pull-back and push-forward of cycles”, “Direct and inverse image
sheaves”, “Singular homology and cohomology”.

For any divisor D, we denote by |D| the complete linear system associated to D,
see “Linear systems”; see also “Linear systems” for the definition of £L(D).

For any line bundle L on a variety X, ¢; denotes the map associated to L; see
“Bundles, fibre -”.

g, denotes a linear system on a Riemann surface of degree d and projective
dimension r; see “Linear systems”.

For any vector space V, G(k, V) denotes the Grassmannian of k-planes in V, see
“Grassmannians”; analogously, for any projective space PP, G(k, IP) denotes the
Grassmannian of projective k-planes in P,

For any topological space X and any ring R, H;(X, R) denotes the i-th homology
module of X with coefficients in R (see “Singular homology and cohomology”);
h;(X, R) denotes its rank; h;(X, R) is also denoted by b; (X, R) (Betti number)

For any topological space X and any ring R, H* (X, R) denotes the i-th cohomol-
ogy module of X with coefficients in R (see “Singular homology and cohomol-
ogy”); K (X, R) denotes its rank.
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HY(X, &)

x(X)

x(X, €)

Kx, wx

Mg, Ty
M(m x n,K)
nef

NSP(X)

Ox, Ox(s)

O(E), 2F(E)

lo)4

Py

PalX), py(X), B(X)
Pic(X)

PID

Tfi(X,x)

For any sheaf of Abelian groups & on a topological space X, H' (X, &) denotes
the i-th cohomology group of €, see “Sheaves”; h'(X, £) denotes its rank; if E
is a holomorphic vector bundle on a complex manifold X or an algebraic vec-
tor bundle on an algebraic variety X, we sometimes write Hi(X, E) instead of
H'(X, O(E)).

For any topological space X, xy(X) denotes the Euler-Poincaré characteristic of

For any sheaf of Abelian groups € on a topological space X, x(X, €) denotes
the Euler-Poincaré characteristic of €, i.e., ¥;_; o (-1)'h'(X, €), when it is de-
fined.

For any complex manifold or smooth algebraic variety X, Kx denotes the
canonical bundle and wy the canonical sheaf, i.e., O(Kx); see “Canonical bun-
dle, canonical sheaf”.

See “Serre correspondence”.
We denote by M(m x n, K) the space of the m x n matrices with entries in K.
The abbreviation nef stands for “numerically effective”; see “Bundles, fibre -”.

For any algebraic variety X, NSP(X) denotes the p-th Neron-Severi group of X;
see “Equivalence, algebraic, rational, linear -, Chow, Neron-Severi and Picard
groups”.

If X is a complex manifold, O (or simply ©) denotes the sheaf of holomor-
phic functions; if X is an algebraic variety, it denotes the sheaf of the regular
functions; more generally, it denotes the structure sheaf of a ringed space; see
“Space, ringed -”; for the definition of Ox(s), see “Hyperplane bundles, twist-
ing sheaves”.

Let E be an algebraic vector bundle on an algebraic variety or a holomorphic
vector bundle on a complex manifold; then O(E) denotes the sheaf of the
(regular, resp. holomorphic) sections of E; see “Bundles, fibre -”. We denote
0F ® O(E) by QP (E).

For any complex manifold X, Q7 denotes the sheaf of the holomorphic p-forms;
for any algebraic variety, Qf denotes the sheaf of the regular p-forms; see
“Zariski tangent space, differential forms, tangent bundle, normal bundle”.

We denote by P% the projective space of dimension n over K.

The symbols p,(X), p,(X) and P,(X) denote respectively the arithmetic genus,
the geometric genus and the i-th plurigenus of X (for X variety or manifold);
see “Genus, arithmetic, geometric, real, virtual -”, “Plurigenera”.

For any algebraic variety X, Pic(X) denotes the Picard group of X; see “Equiv-
alence, algebraic, rational, linear -, Chow, Neron—Severi and Picard groups”.

PID stands for “principal ideal domain”, i.e., for an integral domain such that
every ideal is principal.

For any topological space X and any x € X, m;(X, x) denotes the i-th funda-
mental group of X at the basepoint x; see “Fundamental group”.
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Notation == X

For any complex manifold or algebraic variety X, q(X) denotes the irregularity
of X; see “Irregularity”.

See “Direct and inverse image sheaves”
For any ideal I, sat(I) denotes the saturation of I'; see “Saturation”.
For any d € N, we denote by X, the group of the permutations on d elements.

For any ring R, Spec(R) denotes its spectrum, see “Schemes”. See “Schemes”
also for the definition of Proj(S) for S graded ring.

The symbol S x S' denotes the fibred product of $ and " over B; see “Fibred
product”.

The symbol - denotes the intersection of cycles; see “Intersection of cycles”.
Sometimes it is omitted.

For any ideal J in a ring R, we denote by /7 the radical of J, i.e.,
Vi={x€Rl3IneN - {0} st.x" € J}.

Let R be a commutative ring and U and V be two ideals in R. We define UV to
be theideal {¥;., ;uv;| k € N, u; €U, y; € V}. Moreover, we defineU +V =
{u+vlueUveV}hand(U:V):={x € Rl xV c U}.

For any vector space V, we denote by V" its dual space.
U denotes the disjoint union.

IfSc Xand T c Y, the notation f: (X,S) — (Y,T) standsforamap f: X - Y
such that f(S) c T.

Note. The end of the definitions, theorems, and propositions is indicated by the symbol OJ.
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Abelian varieties. See “Tori, complex - and Abelian varieties”.

Adjunction formula. ([72], [93], [107], [129], [140]). Let X be a complex manifold
or a smooth algebraic variety and let Z be a submanifold, respectively a smooth closed
subvariety. We have

K; = Kylz ® det Ny x,

where N, x is the normal bundle and K and K, are the canonical bundles respec-
tively of X and Z (see “Canonical bundle, canonical sheaf”, “Zariski tangent space,
differential forms, tangent bundle, normal bundle”).

If, in addition, Z is a hypersurface, the formula becomes

K; = Kxl|z ® (Z)lz,

where (Z) is the bundle associated to the divisor Z, since, in this case the bundle N x
is the bundle given by Z (see “Bundles, fibre -” for the definition of bundles associated
to divisors).

Albanese varieties. ([93], [163], [166]). The Albanese variety is a generalization
of the Jacobian of a compact Riemann surface (see “Jacobians of compact Riemann
surfaces”) for manifolds of higher dimension.

Let X be a compact Kdhler manifold of dimension # (see “Hermitian and Kéhlerian
metrics” and “Hodge theory”). The Albanese variety of X is the complex torus (see
“Tori, complex - and Abelian varieties”)

HO ( X, .Ql )V

Alb(X) = m,

where j : H,(X,Z) - H(X, Q")" is defined by j(«) = J:x for any « € H, (X, Z).
The Albanese map
u: X — Alb(X)

is defined in the following way: we fix a point P, of X (base point) and we define
P
W(P) = J
By
forany P € X, where j: is the integral along a path joining P, and P (thus, obviously, it

defines a linear function on H°(X, Q') only up to elements of j(H, (X, Z))). If we choose
abasis w,, ..., w; of H(X, Q") we can describe y in the following way:

p P
u(P) =(jw1,...,jwk).
P, P,



2 — Algebras

For any compact Kdhler manifold X of dimension n, the Albanese variety of X is iso-
morphic to the n-th intermediate Griffiths’ Jacobian of X. The Albanese variety of a
smooth complex projective algebraic variety is an Abelian variety, that is, it can be
embedded in a projective space. See “Jacobians, Weil and Griffiths intermediate -”,
“Tori, complex - and Abelian varieties”.

Algebras. We say that A is an algebra over a ring R if it is an R-module and a ring
with unity (with the same sum) and, for alla,b € A and r € R, we have

r(ab) = (ra)b = a(rb).

Algebraic groups. ([27], [126], [228], [235], and references in “Tori, complex - and
Abelian varieties”). An algebraic group is a set A that is both an algebraic variety (see
“Varieties, algebraic -, Zariski topology, regular and rational functions, morphisms
and rational maps”) and a group and the two structures are compatible, that is, the
map

AxXA— A,
(x, ) = xy!
is a morphism between algebraic varieties.
Structure theorem for algebraic groups (Chevalley’s theorem). Let A be an algebraic

group over an algebraically closed field. Then there exists a (unique) normal affine
subgroup N such that A/N is an Abelian variety. O

Definition. We say that an algebraic group is reductive if all its representations are
completely reducible (see “Representations”). O

Almost complex manifolds, holomorphic maps, holomorphic tan-

gent bundles. ([121], [147], [192], [251]). An almost complex manifold is the

data of

- a C®™ manifold M;

- aC% section J of the bundle TMy ® TMy, (where TMy, is the real tangent bundle)
such that, if we see J as a map

] : Cm(M,TMIR) - COO(M, TM]R)

(where C® (M, TMy) is the vector space of the C* sections of TMy), we have that

where I is the identity map; in other words, for every P € M, the linear map J; :
TpMy — TpMy induced on the real tangent space of M at P is such that
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We can extend ], to TpM¢ := TpMp ® C by C-linearity. We define the holomor-
phic tangent space of M at P to be the i-eigenspace of Jp; we denote it by T,°M
and we denote the holomorphic tangent bundle, i.e., the bundle whose fibre in P is
TL°M, by T"°M. We define the antiholomorphic tangent space of M at P to be the
—i-eigenspace of Jp; we denote it by Tp"' M and we denote the antiholomorphic tangent
bundle, i.e., the bundle whose fibre in P is Ty' M, by T%' M. Thus

TpMc = Tp’M @ Tp' M.

Obviously a complex manifold (see “Manifolds”) is an almost complex manifold: if
{z, = x, + iy,}, are the coordinates on a coordinate open subset, we can define J by

d 5] 0 2
’(a)éy— ’(a@)"a

for any a. Thus, in the case of a complex manifold,

=), - ((),)
TP M_<(aza Pla TPM— aza P a’

o 0 ,2 2 _2 .0
9z, ox, Oy, 0z, 0x, Oy,
We define {dx,, dy,} to be the dual basis of %, ayi' Let

dz, = dx, +idy,

where

and
dz, := dx, —idy,.

Observe that dza(%) = 28, 3, where 8, 4 is the Kronecker delta.

Remark. There is an isomorphism

TpMg = Tp°M
given by x — %(x —iJ(x)) (observe that, through such isomorphism, 52_,, goes to %%).

Analogously, there is an isomorphism
TpMy = TO'M
given by x — %(x+ iJ(x)). O

For any almost complex manifold M, let A?I(M) be the space of the C* (p, q)-forms
on M.

Newlander-Nirenberg theorem. Let (M, J) be an almost complex manifold of (real)
dimension 2n. The almost complex structure is induced by a complex structure if and
only if one of the following conditions holds:
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(1) forall A, B € C®(M,T"°M), we have [A, B] € C®(M, T"°M) (where [A, B] stands
for Ac B —Be A);

(2) forall A, B € C®(M, T" M), we have [A, B] € C®(M, T*' M);

(3) foralla € A" (M), we have da € A" (M) ® A**(M) and for all « € A™*(M), we
have da € A" (M) & A*°(M);

(4) foralla € AP9(M), we have da € AP*(M) & AP (M) for every p,q € {0,...,n};

(5) forall X,Y € C*(M, TMg), we have

(X, Y]+ J[X,JY]+JUX, Y] -[JX,JY] =0

(the first member of the equality is called Nijenhuis tensor). a

Definition. Let M be a complex manifold. We can decompose
d : APA(M) — AP*M(M) @ AP (M)

as
d=0+0,

where
9 : API(M) — APTM(M),

0 : API(M) — AP (M)
are the compositions of d respectively with the projections
APM(M) @ AP (M) — APTM(M),
APM(M) @ AP (M) - AP (M) . a
Let f : M — N be a C*® map between two complex manifolds. By extending the

differential
dfg{ : TpMy — TpNg

by C-linearity, we get a map
dfgz H TPMC - TPN(:.

We say that f is holomorphic if one qf the following equivalent conditions holds:
(i) for every component f/ = f/ +if] of f inlocal coordinates of M and N, we have
2 ! i d
% _ % and g_i; -9,

0xy 0y 9y’
(ii) (%L = 0 forevery « = 1,...,dim(M), where {z,}, are local coordinates of M;

(iii) df® o JM = JN o df® (where J™ and JV denote the operators /] on M and N re-
spectively), i.e., the differential of f is “C-linear” for the complex structures given
by J;
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(iv) df€(r"M) c T"'N:
W) dfer™ m)c ™' N.
Ample and very ample. See “Bundles, fibre -” (or “Divisors”).
Anticanonical. See “Fano manifolds”.

Arithmetically Cohen—-Macaulay or arithmetically Gorenstein. See
“Cohen—Macaulay, Gorenstein, (arithmetically -,-)”.

Artinian. See “Noetherian (and Artinian)”.

Base point free (b.p.f.) See “Bundles, fibre -”.

Beilinson’s complex. ([5], [23], [63], [207], [209], [137]).

Beilinson’s theorem I. Let  be a coherent sheaf on P, (see “Coherent sheaves”). Then
there exists a complex of sheaves

dnf 1

_‘)L,l—’O

2

0—L™" _d‘_", Lrt ﬂ, ......... RGN oo

with ¥ = @ ;5 (1o @)@ such that

Ker d _{3 if k=0,

Imd,, |0 if k=#o.

Every morphism Q”(p) — QP (p) induced by one of the morphisms d, is zero. O

Beilinson’s theorem Il. Let 3 be a coherent sheaf on P¢. Then there exists a complex
of sheaves

d_,

i d d, _{ Gy
0—>L_n—’L"+l~——l> —2>Lnl—’>Ln-—bO

With Lk = @i’j s.t. i—j=k O(—j)h‘(g&r}/(ﬂ) SUCh that

Kerd, [9 if k=0,
Imd,_, | 0 if k#o.

Every morphism O(-p) — O(-p) induced by one of the morphisms d, is zero. O

Bertini’s theorem. ([93], [104], [107], [129], [136], [228]). On a smooth quasi-
projective algebraic variety X over an algebraically closed field of characteristic 0,
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the general element of a finite-dimensional linear system (see “Linear systems”) is
smooth away from the base locus of the system.

Bezout’s theorem. ([72], [93], [104], [107], [196]). Let K be an algebraic closed
field.

Bezout’s theorem. Let V and V' be two projective algebraic varieties of respective di-
mension m and m' in Pj. Suppose that m + m' > n and that, for every irreducible
component C of V n V' and for P general point of C, V and V' are smooth at P and
Tp(Py) = Tp(V) + TP(V'), where T}, denotes the tangent space at P. Then

deg(V N V') = deg(V) deg(V").
(See “Degree of an algebraic subset” for the definition of degree).

By using intersection multiplicities (see “Intersection of cycles”), we can state a
stronger result: suppose that V and V' are two projective algebraic varieties of di-
mension m and m' in Py with m + m' > nand suppose they intersect properly, i.e.,
the codimension of every irreducible component C of V n V' is the sum of the co-
dimension of V and the codimension of V'; then, by using an appropriate definition
of intersection multiplicity of V and V' along C, which we denote by i-(V, V'), we have
that
deg(V) deg(V') = Y ic(V, V') deg(C),
C

where the sum runs over all irreducible components C of V N V' (see, e.g., [72]).
Bielliptic surfaces. See “Surfaces, algebraic -”.
Big. See “Bundles, fibre -” or “Divisors”.

Birational. See “Varieties, algebraic -, Zariski topology, regular and rational func-
tions, morphisms and rational maps”.

Blowing—up (or a-process). ([22], [93], [104], [107], [196], [228]). We follow
mainly [93] and [104].

Roughly speaking, the blow-up of a manifold along a subvariety is a geometric trans-
formation replacing the subvariety with all the directions pointing out from it. For
instance the blow-up of a manifold in a point replaces the point with all the directions
pointing out from it.

We define the blow-up of C" in a point P € C" as follows. By changing coordinates we
can suppose P = 0; we define the blow-up of C" in 0 as the set

Bly(C") == {(x,]) e C" x P | x € I}



