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Preface

A Linear Programming (LP) problem is an optimization problem with a line-
ar objective function and linear constraints. This type of problems is very impor-
tant in the theory and practice of optimization. There are several reasons for
this. first, the linear programming problem in a finite-dimensional space is both
elegant and complete. It can be solved efficiently by simplex method, interior-
point method, etc. In fact, size of the linear programming problem is not an is-
sue as long as it is finite. Second, we can get very useful information, both on
the optimal solution and on the problem itself, by conducting the sensitivity anal-
ysis. Because of this, many nonlinear real-world problems are formulated as lin-
ear programming problems, in spite of the loss of accuracy that this involves.
Third, the linear programming has an extremely wide range of industrial applica-
tions. For these reasons, LP has been pushed and extended to an ever-broad-
ening frontier. The subject of this book is one of such frontier extensions, the
so-called Separated Continuous Linear Programming ( SCLP) and its exten-
sions: Generalized Separated Continuous Linear Programming (GSCLP) , Sep-
arated Continuous Conic Programming ( SCCP) and its generalized version
( Generalized Separated Continuous Conic Programming (GSCCP) ).

Anderson (1978) introduced the SCLP to model the job-shop scheduling
problem. Later on, many researchers, including Anderson and his colleagues,
conducted extensive research on SCLP, mainly in the duality theory and the so-
lution method. In spite of its wide range of applications, SCLP still is a kind of
problem which is difficult to solve in general. In recent years, SCLP has attrac-
ted considerable attention in the research field of stochastic networks. The
multi-class stochastic network is a system consisting of different classes (types)
of jobs which need to be processed and a set of servers which process the
jobs. Jobs arrive to the system randomly or according to some probability distri-
bution. Each server can process one or more classes of jobs and the process-
ing time for each server to process one job is different for different class of jobs.
The jobs in the same class have the same characteristics such as arrival rate,
service requirements, etc. After one job is processed in one server, it may
leave the network instantaneously or may become a job of another class and go



to another server for processing. The multi-class stochastic network is a very
useful model for many real systems. For example, it can model the job-shop
operation in which different types of parts need to be processed by one or more
machines before the.final products can be produced. It can model the economic
system in which different assets are used to produce the goods needed in the
market. It can also model the communication systems in which different data
need to be delivered by using different bandwidth. Also, it can model the road
network in a city in which the running speeds of different vehicles are different.
For each multi-class stochastic network, there is a corresponding deterministic
fluid network, which takes only the first-order data ( means and rates) from the
stochastic model and assumes that the jobs circulating in the network are contin-
uous flows instead of discrete units. With appropriate scaling, the fluid network
is a limit of the stochastic network, in the sense of strong law of large numbers
(refer to, e. g. Chen and Yao, 2001). Furthermore, the fluid model has played
a central role in studying the stability of stochastic networks ( Dai, 1995). Be-
cause of these developments, the real-time control ( dynamic scheduling) of a
stochastic network, which is itself a quite intractable problem, can be turned into
the control of a corresponding fluid network, the problem of which takes exactly
the form of SCLP.

At the time of writing this book, there exist some results for SCLP, both in
the duality theory and the solution methods. However, the existing results are
not satisfactory in the sense that they did not provide a clear picture of the prop-
erties of SCLP. The main objectives of this book are to survey the existing re-
sults, and more importantly, introduce the work we have done recently which
gives some insight into properties of SCLP.

The rest of the book is organized as follows: In Chapter 2, we review the
literature on the work related to SCLP, including the duality theory and solution
methods. In Chapter 3, we present our results for SCLP including the duality
theory and an approximation algorithm. An example is given to illustrate the ap-
plication of our algorithm to solve SCLP. In Chapter 4, we extend our results to
GSCLP. In Chapter 5, we extend our result to SCCP. We also give a brief
review on conic programming and two applications of SCCP. In Chapter 6, we
further extend our results to GSCCP. Finally, we summarize the findings and the
results contained in this book and point out possible future research directions in
Chapter 7.



This book could be used as the textbook for a short course on SCLP and its
extensions. It can also be used with other books for a course on infinite-dimen-
sional LP. The prerequisites for the book are a preliminary knowledge on optimi-
zation theory in n-dimensional real space (and in particular, linear program-
ming) , convex analysis, linear algebra and functional analysis.

Much of this book has come out of my PhD dissertation in the Chinese Uni-
versity of Hong Kong. The remainder is work done in Sun Yat-sen University. |
would like to acknowledge the crucial support provided by my PhD supervisors,
Profs. Shuzhong Zhang and David D. Yao during my stay in the Chinese Uni-
versity of Hong Kong. | am also grateful for Lingnan ( University) College, Sun
Yat-sen University for the facilities and the stimulating environment provided.

Xiaoqging Wang
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Chapter 1 Introduction

Linear Programming (LP) is probably the most successful mathematical
model in terms of its extremely wide range of industrial applications and its su-
perb speed and capacity in solving problems of very large size. For this reason,
LP has been pushed and extended to an ever-broadening frontier. The subject
of this book is one of such frontier extensions, the so-called Separated Continu-
ous Linear Programming ( SCLP) and its extensions: Generalized Separated
Continuous Linear Programming ( GSCLP), Separated Continuous Conic Pro-
gramming (SCCP) and its generalized version ( Generalized Separated Contin-
uous Conic Programming (GSCCP)).

Before we introduce SCLP, let us first explain what is Continuous Linear
Programming (CLP).

Bellman (1957) introduced the following problem to model the “bottle-neck
process” in economics which he called CLP;

( CLP) max L "oty u(t) ait

s.t. But) + L'K(s, ) u(s)ds<b(t),

u(t)=0, te [0, T ], A
where u(t) is the decision variable. The superscript “ ' ” here denotes the
transpose operation for a vector or a matrix.

We see that CLP is very similar to LP, the differences being that the deci-
sion variables in the CLP problem are functions of time instead of discrete vec-
tors. Also, the number of constraints in the CLP problem are infinite whereas
the number of constraints in the LP problem are finite.

Although CLP can model a lot of problems in practice, it is difficult to solve.
Anderson and Nash (1987 ) summarized some earlier results on CLP and its
applications.

Anderson (1978 ) introduced the following problem to model the job-shop
scheduling problem

.
min L c(t)'u(t) dt

s. t LtGu(s) ds=a(t),
Hu(t) <b(t),



u(t) =0,te[0,T],

here u(t) is the decision variable and is assumed to be bounded measurable
function, b(t), c(t) are bounded measurable functions and a(t) is an absolutely
continuous function. This is a special case of CLP and termed by Anderson as
separated continuous linear programming, abbreviated as SCLP. The word
“separated” here refers to the fact that there are two kinds of constraints in
SCLP. the constraints involving integration and the instantaneous constraints
(Anderson and Nash (1987) ).

SCLP has a lot of applications, but it is still difficult to solve in its most gen-
eral setting. There exists a rich literature on duality theory and algorithms for
solving various forms of SCLP. '

In this book, we consider the following SCLP .

(SCLP) max J;T((y+( T-t)c) u(t) +d'x(t) ) at

t
s. t L Gu(s) ds + Fx(t) <a + at,

Hu(t)<b,

u(t) ,x(t)=0, te[0,T],
where u(t), x(t) are decision variables and are assumed to be bounded meas-
urable functions.

This SCLP was first formulated by Weiss (2008 ). Comparing with the
SCLP formulated by Anderson, the above problem is different in that the coeffi-
cient of x(t) in the first constraint and the objective function is more general than
those of Anderson’s model. On the other hand, this problem restricts a(t) , c(t)
in Anderson’s model to linear functions and b(t) to be constant.

SCLP has in recent years attracted considerable attention in the research
field of stochastic networks. The multi-class stochastic network is a system con-
sisting of different classes (types) of jobs which need to be processed and a set
of servers which process the jobs. Jobs arrive to the system randomly or ac-
cording to some probability distribution. Each server can process one or more
classes of jobs and the processing time for each server to process one job is dif-
ferent for different class of jobs. The jobs in the same class have the same
characteristics such as arrival rate, service requirements, etc. After one job is
processed in one server, it may leave the network instantaneously or may be-
come a job of another class and go to another server for processing. The multi-
class stochastic network is a very useful model for many real systems. For ex-
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ample, it can model the job-shop operation in which different types of parts need
to be processed by one or more machines before the final products can be pro-
duced. It can model the economic system in which different assets are used to
produce the goods needed in the market. It can also model the communication
systems in which different data need to be delivered by using different band-
width. Also, it can model the road network in a city in which the running speeds
of different vehicles are different. For each multi-class stochastic network, there
is a corresponding deterministic fluid network, which takes only the first-order
data (means and rates) from the stochastic model and assumes that the jobs
circulating in the network are continuous flows instead of discrete units. With ap-
propriate scaling, the fluid network is a limit of the stochastic network, in the
sense of strong law of large numbers (refer to, e. g. Chen and Yao (2001)).
Furthermore, the fluid model has played a central role in studying the stability of
stochastic networks (Dai (1995) ). Because of these developments, the real-
time control ( dynamic scheduling) of a stochastic network, which is itself a
quite intractable problem, can be turned into the control of a corresponding fluid
network, the problem of which takes exactly the form of SCLP.

Let us re-write ( SCLP) in the following equivalent format using slack varia-
bles:

max Lr( (y +(T=t)c) u(t) +d'x(t) ) dt

s t. LtGu(s) ds + Fx(t) +y(t) =a +at,

Hu(t) +z(t) = b,

u(t), z(t), x(t), y(t)=0, te [0, T ].
The first constraint of this SCLP can be re-written as:
x(t)
()
This equation can be viewed as the system dynamics in a control system. So
(SCLP) can be viewed as a linear optimal control problem with state positivity
constraints ( Pullan (1995) ). Without state positivity constraints, this problem
can be solved by the maximum principle ( Pontryagin et al. (1962) ). However,
in the presence of state constraints, the form of the maximum principle gets
substantially more complicated and more importantly, it does not fully character-
ize the optimality.

Motivated by the abundant applications of SCLP, this book is devoted to the
3
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topic. Our approach is based on a simple discretization idea. We use even par-
tition of time interval [0, T ] to get the discretizations for ( SCLP) and its dual.
By exploiting the relationship among ( SCLP), its dual and their discretization
problems, we are able to derive the duality results for ( SCLP) and design an
approximation algorithm to solve the problem.

Our algorithm has the following characteristics ;

(i) We do not presume SCLP and its dual have optimal solutions.

(i) Our algorithm is in fact a polynomial-time approximation (PTA) scheme.

(iii) The solution obtained is a feasible solution for SCLP with a guaran-
teed error bound in the objective value as compared to the optimal value.

(iv) The trade-off between the quality of the solution and the computational
effort is explicit.

It is inspirational that most of our results for SCLP can be extended to
GSCLP, SCCP and GSCCP in the following forms:

(GSCLP) max JT( c(T-)'u(t) +d(T-t)'x(t))dt

s.t. a) - j ' Guls) o5 =Py 0,

b(t) —Hu(t) =0,
u(t) =0,x(t) =0, te[0,T],

(SCCP) max IT((y+(T—t) c)'u(t) +d'x(t))dt

t
s. t a+ta—qu(s)ds—Fx(t)eK1,
0

b-Hu(t)ekK,,
uhek,, x(Hek,,
and

(GSCCP) max JT( c(T=H'u(t) +d(T-t)'x(t))dt
0

st al - qu(s) ds - Fx(t) eK, ,

b(t) - Hu(t) ek, ,
u(t) eks, x(t)ekK,,
where K,, i = 1,2, 3, 4, are closed convex cones and u(t) , x(t) are bounded
measurable functions, a(t),c(t) are piecewise linear functions, b(t),d(t) are
piecewise constant functions. To our knowledge, this is the first attempt to for-
mulate SCCP and GSCCP and solve them.
4



The rest of the book is organized as follows: In Chapter 2, we review the
literature on the work related to SCLP, including the duality theory and solution
methods. In Chapter 3, we present our results for SCLP including the duality
theory and an approximation algorithm. An example is given to illustrate the ap-
plication of our algorithm to solve SCLP. In Chapter 4, we extend our results to
GSCLP. In Chapter 5, we extend our result to SCCP. We also give a brief re-
view on conic programming and two applications of SCCP. In Chapter 6, we
further extend our results to GSCCP. Finally, we summarize the findings and
the results contained in this book and point out possible future research direc-
tions in Chapter 7.



Chapter 2 Literature review

As with LP, research on SCLP can be roughly divided into two categories .
duality theory and solution methods. Since they are closely related to each oth-
er, we will review the results in these two categories as an integrated whole.
Among all the existing work done on SCLP, The result in Weiss (2008) is sig-
nificant because the algorithm he proposed can produce an exact optimal solu-
tion for SCLP in finite number of “SCLP” pivot steps whereas all other methods
either produce an approximate solution or converge to the optimal solution in infi-
nite steps. We will give a detailed review on his work in this chapter. The reader
is suggested to have the following questions in mind when reading this chapter
in order to get a clear picture of the work being surveyed: One, when does
SCLP have an optimal solution? Two, what is the form of the optimal solution?
Three, how to get the optimal solution?

Recall that Anderson introduced the following SCLP, which we denote as
(SCLP1) here;

(SCLP1) min f Tc(t) "u(t) dt
0

s t. f Gu(s)ds<a(t),

Hu(t) <b(t),

u(t)=0, te[0,T],
where u(t), b(t), c(t) are bounded measurable functions and a(t) is an abso-
lutely continuous function.

Anderson (1978, 1980) also conducted pioneering work on the solution
methods for ( SCLP1). Since the simplex method is so successful to solve the
LP problem, he tried to extend it to ( SCLP1). To use the simplex method, it
is necessary to extend such concepts as “extreme point”, “dual variable”,
“pivot” to (SCLP1).

Using essentially the same method as LP, Anderson and Nash (1987)
derived a dual problem of ( SCLP1), denoted by ( SCLP1" ) as below:

(SCLP1") max - fra(t)’p(t)dt— frb(t)’q(t)dt

)
s t. c(t)+j G'p(s)ds +H'q(t) =0,
t

p(t) =0,q(t) =0,te [0, T].
6



Anderson, Nash and Perold (1983) pointed out: (i) A feasible solution
of (SCLP1) is an extreme point solution if and only if the columns of K =
(G /

H 0
ent for almost all tin [0, T] (the support of a feasible solution is a set of indices
of non-zero components of this feasible solution). (ii) If the feasible region for
(SCLP1) is non-empty and bounded, then ( SCLP1) is solvable and there
exists an extreme point optimal solution for ( SCLP1). (iii) Suppose the feasi-
ble region for ( SCLP1) is non-empty and bounded, if a(t), c(t) are piecewise
linear, with a(t) also absolutely continuous, b(t) is piecewise constant, then
(SCLP1) has an optimal solution in which u(t) is piecewise constant on [0, T].

Based on these results, Anderson and Philpott (1989a) developed the so-
called continuous-time network simplex algorithm to solve a kind of continuous
network program which can be formulated as ( SCLP1) with piecewise linear
a(t) and c(t), with a(t) being absolutely continuous, and b(t) piecewise con-

?) indexed by the support of this feasible solution are linear independ-

stant.

This is the first algorithm which was implemented in a computer to solve the
(SCLP1) problem. Unfortunately, there is no convergence guarantee for this
algorithm, and it often produces a sequence of solutions which converge to a
sub-optimal solution ( Philpott and Craddock (1995) ).

Later, Pullan (1993) introduced another dual problem of ( SCLP1), de-
noted by (SCLP1*") as below;

(SCLP1"') max - f:dn(t)'a(t)—forb(t)'q(t)dt

s.t. c(t) -G'w(t) +H'q(t) =0,
qg(t)=0,a.e.on [0,T],
r(t) monotonically increasing and right continuous on [0, T]
with w(T) = 0.

This dual was introduced to avoid the diffculty in the duality theory of SCLP
mentioned in Grinold (1968) . for (SCLP1) and (SCLP1 "), there exist such in-
stances that either the primal or the dual problem has no feasible or no optimal
solution, while the other one has an optimal solution. See also Buie and
Abrham (1986) for the similar treatment for the dual of CLP.

Pullan also introduced a new discretization for ( SCLP1) which is a finite LP
problem. ( There is another discretization problem for ( SCLP1) called the
“standard discretization” for ( SCLP1) which is also a finite LP problem. This

7



discretization problem was used before in the context of CLP in, for example,
Buie, Abrham (1973) and Tyndall (1965)). Based on the relationship be-
tween ( SCLP1), (SCLP1"') and the discretization problem he introduced,
Pullan proposed an algorithm to solve ( SCLP1) with piecewise linear a(t),
c(t) , with a(t) also absolutely continuous, and b(t) piecewise constant (these
assumptions on the problem input are the same as those in Anderson and
Philpott (1989a)). The algorithm is a discretization-based algorithm. Initially,
a feasible solution for ( SCLP1) is obtained by solving the standard discretiza-
tion problem for ( SCLP1) with an initial partition of [0, T]. Then, in each itera-
tion, according to the partition of [0, 7], the discretization problem for
(SCLP1) Pullan introduced is formulated and solved. The solution of this dis-
cretization is then used together with the existing feasible solution for ( SCLP1)
to construct a new feasible solution for ( SCLP1) with the strictly improving ob-
jective value and the new partition of [0, T]. After each iteration, the number
of the breakpoints in the new feasible solution for ( SCLP1) is tripled. This
process continues until an optimal solution for ( SCLP1) is found or the resulting
feasible solution for ( SCLP1) is within a pre-described limit. He also gave
some variants of this algorithm in this paper. Anderson and Pullan (1996) pro-
posed a purification algorithm which can produce an extreme point solution for
(SCLP1) from a feasible solution for ( SCLP1) with the same or improving ob-
jective function value. The preliminary result suggested that the algorithm in Pul-
lan (1993), when combined with this purification algorithm, can produce the
exact optimal solution for ( SCLP1) with finite number of iterations. Later, in
Pullan (2000), he proved that his algorithm, without any purification proce-
dures, either terminates in a finite number of iterations with an optimal solution
for (SCLP1), or the objective values of the resulting feasible iterative solutions
for (SCLP1) converge to the optimal objective value of ( SCLP1).

Following Pullan’s work, Philpott and Craddock (1995) proposed an algo-
rithm based on the results of Pullan on ( SCLP1) for solving a problem consid-
ered by Anderson and Philpott (1989a) before. That algorithm can also solve
(SCLP1) considered by Pullan (1993). The method is similar to Pullan’s, ex-
cept that the criterion for adding breakpoints in producing the new feasible solu-
tion for (SCLP1) is different. In this algorithm, after each iteration, the number
of breakpoints in the resulting feasible solution for ( SCLP1) is at most doubled.
It also proved the convergence of the algorithm. the algorithm either terminates
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