vvvvvvvvv

- 3 B 5 3

BENRFHZAR

(SRIZhR)

} » PR !
b e
‘*“;-fv

A Ltbrary-Based Introductwn to Co Eric S. Roberts
W B R A %

BB T b W ORR A

China Machine Press

CESHHENZAR aw
The Art and Science of C

A Library-Based Introduction to Computer Science

FER—XHENRZNESRZY, BEREIERNAFNEFLTRE, 1P, FEEF
ARAFHFESE ANSI C EMAIR, XEAFSERATTETLRRE, EENSERE
ERHFRENMESLES TEBG AN,

FEEPIREMMROAZE, ZRYKRBEFGTEAPRELNMIR, EEERERR
BCESMERYE, EMRHER, FFRETURFHEES— TSR, A5, #—F
SHETENREXI, BRFHRTTEESHBRESN.

FHENERFF AR, ROEEHANEM. FHELWEXEAMBEXFE. FRILLEXF
EZSMARFMERBINRA, R—FEGBERBITENRBXE UL ERNRERM.

Eric S. Roberts XEHBEAFITENMFERZE, HEETRETEEHFE
FHBIEE, FERHER ISR Charles Simonyi #EHEIE. T 1980 F &M
ZFHAYHFRARGELTFA, HEAEDECAT LT M Palo Alto B 2 Fe#f 5t Hr L T
SEMMARIIE. EA—(REEETMHBELES, Roberts iFEHEXREHZF
REIZA H FRAEKIRTS T 19934 /)Bing Award® . fifIS—Z&H (CEFIZITHIMR B4
(Programming Abstractions in C: A Second Course in Computer Science) f3E 32 5 E
R B B AL T olk 1 R AL 5| i3k HH AR

This edition is authorized for sale in the People's Republic of
China only, excluding Hong Kong, Macao SARs and Taiwan.

WRXHERNREPEAREMBEREA (FEEEE. R
FAITHERAE) HE.

www.PearsonEd.com

3 ISBN 7-111-13991-7]

@ R = % 35 : www.china-pub.com |

;*‘ﬂr‘ kETABRELESHIS 100037
REMREAL: (010) 68995259 68995264

;3 EEREE: hzedu@hzbook.com

jf: http://www.hzbook.com

= 871 11 ISBN 7-111-13991-7/TP - 3473

EMr: 60.005¢

A

Wi

'HZ Books

" &
= l-H
~ | =L
| B
- |2
-

O HEIl & 7L 30 R INAE

The Art and Science of C
A Library-Based Introduction to Computer Science () Eric S. Roberts #

R 3 hfR

EEHSFHE R

China Machine Press

R B

I

oy R

oo R

PR s SR

English reprint edition copyright © 2004 by Pearson Education Asia Limited and China
Machine Press. .

Original English language title: The Art and Science of C: A Library-Based Introduction to
Computer Science (ISBN: 0-201-54322-2) by Eric S. Roberts, Copyright © 1995.

All rights reserved. '

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

7 % B4 EN R i Pearson Education Asia Ltd &ﬁﬂm:ﬁlktﬂﬁﬁﬁ:ﬁlitﬂﬂﬁ R IR
HEBEFAT, AMBUERFEHSDEZEBAE.

R FHEARLNEREAN (FEFEPEFS. RIS ITEREAMTEEEBK) &
7.

F 53 HE A Pearson Education (AT HRER) BABHRE, THREEZLE
B,

MR, BRLE.

EBEEICS: EF: 01-2004-1204

BHERSE (CIP) MiF

CIEFEMREMZEAR (FEXMR) / (£) FIAX (Roberts, E. S.) F. —Jb3t: HURT LN
fitt, 2004.4

(BIRRR)

45483 The Art and Science of C: A Library-Based Introduction to Computer Science

ISBN 7-111-13991-7

1.C- 0.%- I.CiEs-BF&H-%EX IV.TP312
b E iR A B B ECIPEIR R+ (2004) $0097715
HUBR Tolb AR A (et BmE B 5 FEA#225 WBBCERS 100037)
FiEHE: RigE

REERWERIA R A RENR - FieBEtRRTHRES
2005428 A S 1hR 5B 37k EN R

787mm x 1092mm 1/16 - 46E[l5k

EN%: 5001-7 0007t
ZEHr: 60.005C

LA, maEm. K. R, hEatR s
AL (010) 68326294 ‘

tH i A i

XEEMUME, BERKOFRERMMESEROERME, EEFRXEARFEHE
NGUREE T ZWERIR S hERXHEMNGSE, FEEEERERRBNATSENLKE
. MEINE. EktERSy, EENE LR SETFFERBEFHE S, HENER S
W 2 B WAL} R S AL B B B AT £k, MmN LRFEEE, FREYTHER
Hifees, BRETERGEE, BEBEERAME, XAaFEENTE, KNMEHFTIKBEANRK
T R

T, E2REEMAXREEZD T, REMNTEAXEERRE, ¥ELAFTNERAE
B, XX TREEFRMLRFHERLIE, BREKSR MEFLEHNWBZEZEFTFRELE
RERRE. AREFBEARRIEEE. MLARKZPHIRT, XERFREEXERXHT
BHFERROLTERRENZMBH DA ZEGEE 2L, Bk, sh#E—#EIMEELT
BALEM AN BRETENLEETF AR REFBROESER, DESHFEHR. BIRAEMH
F—MARFN LR ZE.

LR T A EEERXERARARDKEERE “HREAEFEFRS". B19984EFH 1,
HLEATRB LEEAKET#RE. BEEIIMEBEM L. 23 NVLEHFIRE S, BRINSE
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ it R ELHRMAFTBEYL TR
HHAEXAR, MWENEA S S FE4t % H Tanenbaum, Stroustrup, Kernighan, Jim
GrayF KM AKX —HLSHER, LN “HEIFHZEAS" HEHRUR, SHigE%3]. HRLE
. KEASEMEE, BEARTXEABRRIAEE.

“UEIREAS" HHRTESSE TEAIMEENR OEE, BERNERANRETHE
HEEES, A7 EHBAETHIEFNERAOTHE EBNEELEYERESRESE
R, AT BARBOPEREF. €4, “HEREAE" S2HR TEEA R,
XERBEREDRLTREFMOM, HEFZERRAAEXEHMSEBE, HE—FHK
I"SRBATT T RLHIER.

MEFRRIENOI CEMBEMEAENEFRENL, HEFRATEMELBEMOTERMAEA
HEA—AFHIBER. Ak, EEATBMASEBEMPLE, £ “LEET” HEHNZT
HR =R ENLEM: B “HHREABRZENS" 25, SRENRASEHT, W AR R
“GRIFRBE" ; R, SHELXBTHBFEHTH “Schaum’s Outlines” RFIHAR “2XL
HWEIRIRI . ATRIEX=ZEABOURYE, RGO T EiFbAhERmERNRS,
BEARBETHPEMAER. K%, HERE. BHRERE. SEX%¥. LEREXE.
ERA%. WiLk%. FEBEA%. BWREIL A%, BRRERE. PEARKE. X
MR KSE. LB RS, RILKE. MERERTKRE, BMAE. BlLTERE. +EE

KfE BRR2WMFANEP LFEANERAKRFMRVILGETEILNEN SR ELEEHR ‘%
FKERFEALR", ABRMNBEEEERAHEEE. ;

33 = 28N A5 B W 7 B0 EDAR A BEFRSMR B U S B, hE N R H AL R AR T i

BFEHITEN. XhiF2HEMBHECAM. 1L T., Stanford, U.C. Berkeley, C. M. U. &t} &
KEFFH. AMURETRBFiRI. BEEW. ﬁj’ﬁ%%\ HELEREN. BiBE. RiFR
B, 8641TE. B dE5M%. EBEFEFRARFTRELTLE & ROELRE,
MmE&ARHEC—ANHAESRIEZT. AHUHL=TEMAR. ANCHL2HFHILE
Pr sk il o 75 22 20l A0 & M KBRS 2 T, IRE LB AT FNRENE RSP hBE
MAZE. ' ; ;
BREEE . BB . —RIEE. MHEOEK. FANSE, EEEERNNVE
BAETREMRIE, Lﬁzﬂ;}'ﬂﬁffmmR§E% i KB E L IER BALE X — &4k B E
. &HB’J:‘.HKR;E%{I']E’JF%BB.QWJE}'% A28 2\ T I A 3 AR T HE4R
EN‘B&%%#E’IE ?kfl]ﬂﬁﬁ%?ﬁﬁ%ﬂﬂ?

B, R4 - hzedu@hzbook com
BEREiE: (010) 68995264

BRARMEE: bR T ERX 55 EE#EH1S
MR B 4ah%: 100037

LEAL
¥ &3
KL 5
8R4 8
SR
o BA

WA A=

.
2 2
FHE
i B 4R
B
=ES
& &

AR =

ALK

RIEFERS

(Hiciek EC S m)

ERLE S L&A
INEF Z 8
=3y F¥
M &L i 1oy 2%
LR &S g
et R LES’S
R £ e
S S

B 4

@ F) % x| T

7

2

223

In loving memory of Grace E. Bloom
(1924-1994) for helping me appreciate
the value of ideas and the importance
of writing clearly about them.

About the Author

I first began teaching introductory computer science
more than 20 years ago while I was still a student at
Harvard. Since receiving my Ph.D. in 1980, I have
taught computer science at Harvard, Wellesley, and
Stanford, where I am Associate Chair of the
Computer Science Department. In that capacity, I

.am responsible for the undergraduate program in

computer science. Although I have taught advanced
courses in computer science and have also worked
in the research industry, my greatest joy comes from
opening up the enormous power of computers to
students who are just beginning to learn about them.
In their excitement, my own love for computer sci-
ence is constantly renewed.

In addition to my teaching at Stanford, I have
served since 1990 as the president of Computer
Professionals for Social Responsibility, a public-
interest association of computer professionals with
2000 members in 22 chapters throughout the United
States. Computers affect our society in many differ-
ent ways. Just as it is important to learn about the
technology, it is critical that we also take the respon-
sibility to ensure that computers are used for the ben-
efit of all. If you have suggestions as to how I might
make the presentation more clear, or you encounter
errors in this text, please let me know. You can reach
me by electronic mail at ericr@aw.com.

Eric S. Roberts
Department of Computer Science
Stanford University

To the Student

Welcome! By picking up this book, you have taken a step into the world of computer
science—a field of study that has grown from almost nothing half a century ago to
become one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in
almost every area of human endeavor. Business leaders today are able to manage
global enterprises on an unprecedented scale because computers enable them to
transfer information anywhere in a fraction of a second. Scientists can now solve
problems that were beyond their reach until the computer made the necessary cal-
culations possible. Filmmakers use computers to generate dramatic visual effects
that are impossible to achieve without them. Doctors can determine much more
accurately what is going on inside a patient because computers have enabled a
massive transformation in the practice of medicine.

Computers are a profoundly empowering technology. The advances we have seen
up to now are small compared to what we will see in the next century. Computers
will play a major role in shaping that century, just as they have the last 50 years.
Those of you who are students today will soon inherit the responsibility of guiding
- that progress. As you do so, knowing how to use computers can only help.

Like most skills that are worth knowing, learning how computers work and how
to control their enormous power takes time. You will not understand it all at once.
But you must start somewhere. Twenty-five centuries ago, the Chinese philoso-
pher Lao-tzu observed that the longest journey begins with a single step. This
book can be your beginning.

For many of you, however, the first step can be the hardest to take. Many stu-
dents find computers overwhelming and imagine that computer science is beyond
their reach. Learning the basics of programming, however, does not require
advanced mathematics or a detailed understanding of electronics. What matters in
programming is whether you can progress from the statement of a problem to its
solution. To do so, you must be able to think logically. You must have the neces-
sary discipline to express your logic in a form that the computer can understand.
Perhaps most importantly, you must be able to see the task through to its comple-
tion without getting discouraged by difficulties and setbacks. If you stick with the
process, you will discover that reaching the solution is so exhilarating that it more
than makes up for any frustrations you encounter along the way.

This book is designed to teach you the fundamentals of programming and the
basics of C, which is the dominant programming language in the computing indus-
try today. It treats the whys of programming as well as the hows, to give you a feel
for the programming process as a whole. It also includes several features that will
help you focus on the essential points and avoid errors that slow you down. The
next few pages summarize these features and explain how to use this book effec-
tively as you begin your journey into the exciting world of computer science.

‘;W:USING The Art and Science of C

For Chapter Review

Each chapter includes .éasily accessible material to guide your study
and facilitate review of the central topics.

CHAPTER 4

Statement Forms

The statements was interesting but tough.
— Mark Twain, Adventures of Huckleberry Finn, 1884

The list of objectives
previews the key topics
covered by the chapter. Obiettives
Because each objective o Rl i bt i sl s

To recognize that the equal sign used for assignment is treated s a binary operator in (.
= To understand that statements can be collected into blocks.

= To recognize thot control statements fall into two dlasses: conditional and iterative.
help you to assess = To loarn how to manipulate Boolean dato and to appreciat it importance.

To increase your fomiliarity with the relational operators: =, 1=, <, <=, >, and >=.

To understond the behavior of the &=, 1 1, and : operators.

To master the detoils of the i £, switch, while, ond for stalements.

identifies a concrete skill,
the chapter objectives

your mastery of the

essential material.

Summary

In Chapter 3, you looked at the process of programming from a holistic perspec-
tive that emphasized problem solving. Along the way, you learned about several
control statements in an informal way. In this chapter, you were able t» investigate
how those statements work in more detail. You were also introduced to a new type
of data called Boolean data. Although this data type contains only two values—
TRUE and FALSE—being able to use Boolean data effectively is extremely impor-
tant to successful programming and is well worth a little extra practice.

This chapter also introduced several new operators, and at this point it is helpful
to review the preced lationships for all the op you have seen so far,
That information is summarized in Table 4-1 the operators are listed from highest
to lowest precedence.

The important points introduced in this chapter includ

« Simple statements consist of an expression followed by a semicolon.

» The = used to specify assignment is an operator in C. Assignments are there-
fore legal expressions, which makes it possible to write embedded and multi-
ple assignments.

« Individual can be
commonly called blocks.

« Control statements fall into two classes: conditional and iterative.

= The genlib library defines a data type called bool that is used to represent
Boolean data. The type bool has only two values: TRUE and FALSE.

« You can generate Boolean values using the relational operators (<, <=, >,
>=, ==, and !=) and combine them using the logical operators (s, ||, and
1)

« The logical operators & and | | are evaluated in left-to-right order in such a
way that the evaluation stops as soon as the program can determine the
result. This behavior is called short-circuit evaluation.

1 q

into pound more

Operator Associativity
unary - ++ -- | (typecasl) right-to-left
* /% left-to-right
+ - HHo-righ'
€ <= -i% >= |efHo~right
== = left-to-right
& left-to-right
1 left-to-right
2 right-to-left
= op=. right-to-left

Semmary 131

TABLE 4-1

 Objectives

The Summary describes,
in rhore detail, what you
should have learned in
connection with the

~ Learning to Program

Programming is both a science and an art. Le:arniﬁg' to program well
requires much more than memorizing a set of rules. You must learn through

experience and by reading other programs. This text includes several

The text includes a

large number of Program
examples that illustrate how
individual C complete are used
to create complete programs.
These examples also serve as
models for your own programs;
in many cases, you can solve a
new programming problem by
making simple modifications to
a program from the text.

features to aid in this process.

The final character in the string is a special character called newline, indicated by
the sequence \n. When the printf function reaches the period at the end of the
sentence, the cursor is sitting at the end of the text, just after the period. If you
wanted to extend this program so that it wrote out more messages, you would
probably want to start each new message on a new screen line. The newline char-
acter, defined for all modern computer systems, makes this possible. When the
printf function processes the newline character, the cursor on the screen moves
to the beginning of the next line, just as if you hit the Return key on the keyboard
(this key is labeled Enter on some computers). In C, programs must include the
newline character to mark the end of each screen line, or all the output will run
together without any line breaks.

2.2 A program to add two numbers

To get a better picture of how a C program works, you need to consider a slightly
more sophisticated example. The program add2.c shown in Figure 2-2 asks the
user to enter two numbers, adds those numbers together, and then displays the
sum.

The add2.c program incorporates several new programming concepts that were
not part of hello,c. First, add2.c uses a new library called simpio, simplified

e

I*
* File: add2.c

* This program reads in two numbers, adds them together,
* and prints their sum.

#include <stdio.h>
#include "genlib.h"
#include "simpio.h"

main ()

{

int nl, n2, total;

printf ("This program adds two numbers.\n");
printf(*1lst number? *);

nl = GetInteger();

printf("2nd number? *);

n2 = GetInteger();

total = nl + n2;

printf("The total is %d.\n", total);

%

The printf function can display any number of data values as part of the output.

For edch integer value you want to appear as part of the output, you need to

include the code %d in the string that is used as the first argument in the printf

. call. The actual values to be displayed are given as additional arguments to

L printf, listed in the order in which they should appear. For example, if you
o changed the last line of the add2.c program to

printf("%d + %d = %d\n", nl, n2, total);

the value of n1 would be substituted in place of the first %d, the value of n2 would
appear in place of the second %d, and the value of total would appear in place of
the third %d. The final image on the computer screen would be

This program adds two numbers.
1st number? 2J

2nd number? 3.

2+3=5

The print f function is discussed in more detail in Chapter 3.

Cascading i £ statements

The syntax box on the right illustrates an important special case of the if state-
ment that is useful for applications in which the number of possible cases is larger
than two. The characteristic form is that the

else part of a condition consists of yet ”
another test to check for an alternative con- St if statements
dition. Such statements are called cascad- if (condition;) {
ing if statements and may involve any statements,
number of else if lines. For example, the) else if (conditiony) { any
program signtest .c in Figure 4-3 uses the statements; number
ding if to report whether a) else if (condition;) { may
number is positive, zero, or negative. Note Statements dappear
that there is no need to check explicitly for) else {
‘ the n < 0 condition. If the program reaches statementspone
i that last else clause, there is no other possi-)
bility, since the earlier tests have eliminated whiras
o the positive and zero cases. each condition; is a Boolean expressi
sl In many situations, the process of choos- each smlemems, is a block of s(atcmenls to be executed
9 ing b a set of independent cases can if condition; is TRUE
be handled more efficiently using the statements o, is the block of statements to be executed
switch statement, which is described in a if every condition; is FALSE
separate section later in this chapter.

The 2 : operator (optional)

The C programming language provides another, more compact mechanism for
onditional e :

XV

" To Avoid Errors

All programmers, even the best ones, make mistakes. Finding these e
mistakes, or bugs, in your programs is a critically important skill. The following
features will help you to build this skill. '

IR BEY bolance2.c (buggy version)
/

* File: balance2.c

* This file contains a buggy second attempt at a program to

* balance a checkbook.
./

To help you learn to recognize and

correct bugs, this text includes several

#include <stdio.h>
#include *genlib.h”
#include *simpio.h*

main()

(

double entry, balance;

printf(*This program helps you balance your checkbook.\n*®);
printf (*Enter each check and deposit during the month.\n"):

buggy programs that illustrate typical
errors. To make sure you do not use
these programs as models, such
incorrect programs are marked with
a superimposed image of a bug.

printf(*"To indicate a check, use a minus sign.\n");
printf("Signal the end of the month with a 0 value.\n");
printf("Enter the initial balance: *);

balance = GetReal():
while (TRUE) {

printf ("Enter check (-) or deposit: *);

entry = GetReal();
if (entry == 0) break;
balance += entry;
if (balance < 0) {

printf("This check bounces.

balance -= 10;
)

$10 fee deducted.\n");

printf("Current balance = %g\n", balance);

}

printf(“Final balance = %g\n", balance):

Common Pitfalls provide handy
reminders about mistakes all
beginning programmers are
likely to make, and how to avoid
them. Faulty lines of code are
highlighted with a bug image
and annotated in color.

cCoMmMON
PITEALLS

When writing programs
that test for equolity, be
sure 1o use the == oper-
ator ond not the single =
operator, which signifies
ussignment. This error is
exiremely common and
can leod o bugs that ore
very difficult 1o find,
because the compiler
cannol detect the error.

== Equal
t= Not equal

When you write programs that test for equality, be very careful to use the == oper-
ator, which is composed of two equal signs. A single equal sign is the assignment
operator. Since the double equal sign violates conventional mathematical usage,
replacing it with a single equal sign is a particularly common mistake. This mis-
take can also be very difficult to track down because the C compiler does not usu-
ally catch it as an error. A single equal sign usually turns the expression into an
embedded assignment, which is perfectly legal in C; it just isn’t at all what you
want. For example, if you wanted to test whether the value of the variable x were
equal to 0 and wrote the following conditional expression

if (x%\) v o This s incorrect.

the results would be confusing. This statement would not check to see if x were
equal to 0. It would instead insist on this condition by assigning the value 0 to x,
which C would then interpret (for reasons too arcane to describe at this point) as
indicating a test result of FALSE. The correct test to determine whether the value of
the variable xis equal to 0 is
if (x==0) . . .

Be careful to avoid this error. A little extra care in entering your program can save
a lot of debugging time later on

