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Preface to the Second
Edition

The impetus for this second edition is a desire to include some of the new techniques that have
emerged in recent years and also extend the scope of the book to cover certain areas that were
under-represented (even neglected) in the first edition. In this second volume there are
three topics that fall into the first category (density functional theory, bioinformatics/ protein
structure analysis and chemoinformatics) and one main area in the second category
(modelling of the solid state). In addition, of course, a new edition provides an opportunity
to take a critical view of the text and to re-organise and update the material. Thus whilst
much remains from the first edition, and this second book follows much the same path
through the subject, readers familiar with the first edition will find some changes which I
hope they will agree are for the better.

As with the first edition we initially consider quantum mechanics, but this is now split into
two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical
approaches together with some examples of the uses of quantum mechanics. Chapter 3
covers more advanced aspects of the ab initio approach, density functional theory and the
particular problems of the solid state. Molecular mechanics is the subject of Chapter 4
and then in Chapter 5 we consider energy minimisation and other ‘static’ techniques.
Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and
Monte Carlo). Chapter 9 is devoted to the conformational analysis of ‘small” molecules
but also includes some topics (e.g. cluster analysis, principal components analysis) that
are widely used in informatics. In Chapter 10 the problems of protein structure prediction
and protein folding are considered; this chapter also contains an introduction to some of
the more widely used methods in bioinformatics. In Chapter 11 we draw upon material
from the previous chapters in a discussion of free energy calculations, continuum solvent
models, and methods for simulating chemical reactions and defects in solids. Finally,
Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering
and designing new molecules, including database searching, docking, de novo design,
quantitative structure-activity relationships and combinatorial library design.

As in the first edition, the inexorable pace of change means that what is currently considered
‘cutting edge” will soon become routine. The examples are thus chosen primarily because
they illuminate the underlying theory rather than because they are the first application of
a particular technique or are the most recent available. In a similar vein, it is impossible
in a volume such as this to even attempt to cover everything and so there are undoubtedly
areas which are under-represented. This is not intended to be a definitive historical account
or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature
references it is possible that the invention of some technique may appear to be incorrectly
attributed or a ‘classic” application may be missing. A general guiding principle has been
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to focus on those techniques that are in widespread use rather than those which are the
province of one particular research group. Despite these caveats I hope that the coverage
is sufficient to provide a solid introduction to the main areas and also that those readers
who are ‘experts’ will find something new to interest them.

A Companion Web Site accompanies Molecular Modelling:
Principles and Applications, Second Edition by Andrew Leach

Visit the Molecular Modelling Companion Web Site at www.booksites.net/leach

The website contains general information about the book, up-to-date hyperlinks to
related chemistry sources on the web, reference copies of appendices of relevant
acronyms, and twenty-six full screen, full-colour graphical representations of molecular
structures.




Preface to the First Edition

Molecular modelling used to be restricted to a small number of scientists who had access to
the necessary computer hardware and software. Its practitioners wrote their own programs,
managed their own computer systems and mended them when they broke down. Today’s
computer workstations are much more powerful than the mainframe computers of even a
few years ago and can be purchased relatively cheaply. It is no longer necessary for the
modeller to write computer programs as software can be obtained from commercial soft-
ware companies and academic laboratories. Molecular modelling can now be performed
in any laboratory or classroom.

This book is intended to provide an introduction to some of the techniques used in
molecular modelling and computational chemistry, and to illustrate how these techniques
can be used to study physical, chemical and biological phenomena. A major objective is
to provide, in one volume, some of the theoretical background to the vast array of methods
available to the molecular modeller. I also hope that the book will help the reader to select
the most appropriate method for a problem and so make the most of his or her modelling
hardware and software. Many modelling programs are extremely simple to use and are
often supplied with seductive graphical interfaces, which obviously helps to make
modelling techniques more accessible, but it can also be very easy to select a wholly
inappropriate technique or method.

Most molecular modelling studies involve three stages. In the first stage a model is selected
to describe the intra- and inter-molecular interactions in the system. The two most common
models that are used in molecular modelling are quantum mechanics and molecular
mechanics. These models enable the energy of any arrangement of the atoms and molecules
in the system to be calculated, and allow the modeller to determine how the energy of the
system varies as the positions of the atoms and molecules change. The second stage of a
molecular modelling study is the calculation itself, such as an energy minimisation, a
molecular dynamics or Monte Carlo simulation, or a conformational search. Finally, the
calculation must be analysed, not only to calculate properties but also to check that it has
been performed properly.

The book is organised so that some of the techniques discussed in later chapters refer to
material discussed earlier, though I have tried to make each chapter as independent of
the others as possible. Some readers may therefore be pleased to know that it is not essential
to completely digest the chapters on quantum mechanics and molecular mechanics in order
to read about methods for searching conformational space! Readers with experience in one
or more areas may, of course, wish to be more selective.

I have tried to provide as much of the underlying theory as seems appropriate to enable the
reader to understand the fundamentals of each method. In doing so I have assumed some
background knowledge of quantum mechanics, statistical mechanics, conformational
analysis and mathematics. A reader with an undergraduate degree in chemistry should
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have covered this material, which should also be familiar to many undergraduates in the
final year of their degree course. Full discussion can be found in the suggestions for further
reading at the end of each chapter. I have also attempted to provide a reasonable selection of
original references, though in a book of this scope it is obviously impossible to provide a
comprehensive coverage of the literature. In this context, I apologise in advance if any tech-
nique is inappropriately attributed.

The range of systems that can be considered in molecular modelling is extremely broad,
from isolated molecules through simple atomic and molecular liquids to polymers, bio-
logical macromolecules such as proteins and DNA and solids. Many of the techniques are
illustrated with examples chosen to reflect the breadth of applications. It is inevitable that,
for reasons of space, some techniques must be dealt with in a rudimentary fashion (or not
at all), and that many interesting and important applications cannot be described. Molecular
modelling is a rapidly developing discipline and has benefited from the dramatic improve-
ments in computer hardware and software of recent years. Calculations that were major
undertakings only a few years ago can now be performed using personal computing
facilities. Thus, examples used to indicate the ‘state of the art’ at the time of writing will
invariably be routine within a short time.



Symbols and Physical
Constants

This list contains the most frequently used symbols and physical constants ordered
according to approximate appearance in the text.

A Lagrange multiplier
r, 0, ¢ spherical polar coordinates
ij k orthogonal unit vectors along x, y, z axes

¢, 0, Euler angles

(x) orx  arithmetic mean value of x
I unit matrix

i square root of —1

r unit vector

« exponent in Gaussian function (normal distribution)

o standard deviation

o* variance

h Planck’s constant (6.626 18 x 10 **]Js)

h h/27 (1.05459 x 10**]s)

m particle mass

v molecular wavefunction

v? & )0x* + 0% |y* + 97 92* (‘del-squared’)

H Hamiltonian

P spatial orbital

o, 3 spin functions (‘spin up” and ‘spin down’)

X spin orbital (product of spatial orbital and a spin function)
b basis function/atomic orbital (usually labelled ¢,,, ¢,, ¢5, ¢,)
dvordr indicates an integral over all spatial coordinates

do indicates an integral over all spin coordinates

dr indicates an integral over all spatial and spin coordinates
ti distances between two particles i and j (usually electrons in quantum mechanics)
Rap distance between two nuclei A and B

0;i Kronecker delta (6; = 1if i = j; 6; = 0if 1 # j)

A exchange operator

7 Coulomb operator

AT core Hamiltonian operator

Fock matrix

overlap matrix

overlap integral between orbitals i and j
Fock operator

matrix of basis function coefficients

O\Q:h »n
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E matrix of orbital energies

P density matrix

¢ Slater exponent

K number of basis functions

N number of electrons

M number of nuclei

a Coulomb integral in Hiickel theory

B resonance integral in Hiickel theory

a atomic or molecular polarisability

p(r) electron density at r

() electrostatic potential at r

a b, c lengths used to describe unit cell

o, B,y angles used to describe unit cell

G reciprocal lattice vector

T translation within real-space lattice

k wavevector used in solid-state quantum mechanics
q; partial charge on atom i

Za nuclear charge on atom A

I dipole moment

(S} quadruple moment

1 bond length

k force constant

0 bond angle

T, W torsion angle

E electric field

X electronegativity

€ well depth parameter in Lennard-Jones pairwise potential function
o collision diameter used in Lennard-Jones function
", m separation corresponding to minimum in Lennard-Jones function
A coefficient of r '? in Lennard-Jones function

C coefficient of r® in Lennard-Jones function

€o dielectric constant in vacuo

&k relative permittivity

15 dielectric constant (e = £,¢,)

kg Boltzmann'’s constant (1.38066 x 102 JK )

Na Avogadro’s number (6.02205 x 10% mol )

N number of particles in system

r atomic or molecular position

7 denotes positions of the N particles in the system
p linear momentum

p" denotes momenta of the N particles in the system
p total linear momentum of system

v total potential energy of system (often written as a function of r")
v pairwise potential energy

X 3N Cartesian vector at point k
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gradient at point k (first derivative of ¥~ with respect to the coordinates)
Hessian matrix of second derivatives of ¥~ with respect to the coordinates
normal mode vibrational frequency

inverse Hessian matrix

canonical ensemble partition function
configurational integral

kinetic energy

density

temperature

de Broglie wavelength (= /h?/2mmkgT)
time

pressure

volume

instantaneous energy

internal energy

Helmholtz free energy

Gibbs free energy

heat capacity at constant volume

pair radial distribution function

switching function

length of box in periodic simulations
statistical inefficiency

angular velocity

reduced mass

virial

velocity

acceleration

third derivative of position with respect to time (d°r/dt)
time step in molecular dynamics simulations
force between particles i and j

Ensemble average value of property A
generalised coordinate

un-normalised correlation function
normalised correlation function

coupling parameter

isothermal compressibility

collision frequency/friction coefficient (in stochastic dynamics)
order parameter

probability density function

transition matrix

stochastic matrix

random number (usually in range 0 to 1)
activity

chemical potential

Rosenbluth weight
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xvii

G metric matrix (in distance geometry)

pi ith principal component

z variance-covariance matrix

A coupling parameter (used in free energy calculations)
W(r™) weighting function used in umbrella sampling

N number density (= N/V)

SaB similarity coefficient between two molecules A and B

Dag ‘distance” between two molecules A and B

o Hammett substitution constant

P partition coefficient of solute between two solvents

T log(P,/Py) for a substituent X relative to a hydrogen substituent
* squared correlation coefficient

R? squared correlation coefficient in multiple linear regression

QZ

cross-validated R?
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