Leon Petrosjan
Vladimir V. Mazalov

Editors

Yolume 16

£

Game Theory and
Applications

Pierre Bernhard Margarita A. Gladkova
Naima El Farouq Nikolay A. Zenkevich
Jane M. Binner Anna A. Sorokina
Leslie R. Fletcher Reinoud Joosten
Vassili Kolokoltsov Ling-peng Meng
Vladimir M. Bure Chuan-feng Han
Anna A. Sergeeva Jian-min Wang
Simone Cacace Glenn Pierce
Emiliano Cristiani Christopher Boulay
Maurizio Falcone Mikhail Malyutov
Luca Dall'Asta Fernando Pigeard de Almeida Prado
Paolo Pin Ekaterina V. Shevkoplyas

Abolfazl Ramezanpour Sergey Yu. Kostyunin
Baomin Dong Martin Shubik




GAME THEORY AND APPLICATIONS

GAME THEORY AND APPLICATIONS

VOLUME 16

LEON PETROSJAN
AND

VLADIM LRMA.ZALD.\Z.....
EBgRsA L) 151

ﬂ@t :]l J -:.;—i

—

; publlshers

New York



Copyright © 2013 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.

For permission to use material from this book please contact us:
Telephone 631-231-7269; Fax 631-231-8175
Web Site: http://www.novapublishers.com

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
information contained in this book. The Publisher shall not be liable for any special,
consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or
reliance upon, this material. Any parts of this book based on government reports are so indicated
and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in
this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage
to persons or property arising from any methods, products, instructions, ideas or otherwise
contained in this publication.

This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert
assistance is required, the services of a competent person should be sought. FROM A
DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Additional color graphics may be available in the e-book version of this book.

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

ISBN: 978-1-62618-444-2
ISSN: 1535-4792

Published by Nova Science Publishers, Inc. 1 New York



GAME THEORY AND APPLICATIONS

GAME THEORY AND APPLICATIONS

VOLUME 16



GAME THEORY AND APPLICATIONS

LEON PETROSJAN AND VLADIMIR MAZALOV
DEPARTMENT OF APPLIED MATHEMATICS, SAINT PETERSBURG
UNIVERSITY, SAINT PETERSBURG, RUSSIA

Game Theory and Applications.
Volume 16
ISBN: 978-1-62618-444-2

Game Theory and Applications.
Volume 15
ISBN: 978-1-61470-187-3

Game Theory and Applications.
Volume 14
ISBN 978-1-60692-413-6

Game Theory and Applications.
Volume 13
ISBN: 978-1-60456-297-2

Game Theory and Applications.
Volume 12
ISBN: 1-60021-468-1

Game Theory and Applications.
Volume 11
ISBN: 1-59454-993-1

Game Theory and Applications.

Volume 10
ISBN: 1-59454-224-4

Game Theory and Applications.
Volume 9
ISBN: 1-59033-843-X

Game Theory and Applications.
Volume 8
ISBN: 1-59033-373-X

Game Theory and Applications.
Volume 7
ISBN: 1-59033-123-0

Game Theory and Applications.
Volume 6
ISBN: 1-56072-901-5

Game Theory and Applications.
Volume 5
ISBN: 1-56072-822-1

Game Theory and Applications.
Volume 4
ISBN: 1-56072-629-6

Game Theory and Applications.
Volume 3
ISBN: 1-56072-496-X

Game Theory and Applications.
Volume 2
ISBN: 1-56072-390-4

Game Theory and Applications.
Volume 1
ISBN: 1-56072-266-5



PREFACE

The workshop “Game theory for finance, social and biological sciences”, held in War-
wick 14-17 of April 2010, was organised in the framework of the 2009/2010 EPSRC Sym-
posium on the Mathematics of Complexity Science and Systems Biology (Main organisers
Robert MacKay and David Wild). Special attention was given to problems in dynamic
games under partial information and to the development of numerical methods for high-
dimensional games (there is an increasing focus on this arena as recent theory is leading
to solution methods for problems which were heretofore quite intractable). The interdis-
ciplinary aspects touched upon were related to dynamical systems via replicator dynam-
ics, with probability (measure-valued processes), with statistical mechanics (kinetic equa-
tion, non-equilibrium behaviour), with max-plus (or tropical, or idempotent) mathematics.
Speakers from all over the world included Steven Alpern from LSE, London (How to Pa-
trol a Network against an Unknown Attack), Marianne Akian from INRIA, France (Trop-
ical Polyhedra are Equivalent to Mean Payoff Games), Tibor Antal from Harvard (Who
Laughs Last? Perturbation Theory for Games), Tamer Basar from Illinois (Non-Neutral
Decision Making in Stochastic Teams and Games), Pierre Bernhard from INRIA-Sophia
Antipolis-Méditerranée (A Robust Control Approach to Option Pricing: the Uniqueness
Theorem), Constantinos Daskalakis from MIT (The Complexity of Equilibria), Maurizio
Falcone from Universita di Roma Sapienza (A Constructive Approach to Pursuit-Evasion
Games), Sayantal Ghosal from Warwick (P-Stable Equilibrium: Definition and Some Prop-
erties), Paul Goldberg from Liverpool (How hard is Competition for Rank?), Sergiu Hart
from Jerusalem (Comparing and Measuring Risks), Onesimo Hernandez-Lerma from Cin-
vestav, Mexico (Overtaking Equilibria for ZeroSum Markov Games), David Gill from
Southampton (A Structural Analysis of Disappointment Aversion in a Real Effort Com-
petition), George Mailath from Pennsylvania (A Foundation for Markov Equilibria in In-
finite Horizon Perfect Information Games), Leon Petrosyan from St. Petersburg (How to
Make the Cooperation Stable?), Vladimir Mazalov from Petrozavodsk (Equilibrium in N-
Person Game of “Showcase Showdown”), Krzysztof Szajowski from Wroclaw (Stopping
Games under Partial Information), George Zaccour from HEC Montreal (Investment Dy-
namics: Good News Principle), Myrna Wooders from Vanderbilt (Share Equilibrium in
Local Public Good Economies) and many other outstanding contributors. The conference
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was exclusively marked by a rare natural event: the eruption of an Icelandic volcano, which
blocked the functioning of most of the airlines, turning the way back for many participants
to an adventurous enterprise. In this volume we publish the review of Martin Shubik “The
present and future of game theory” and the contributions presenting extending versions of
the talks given at the workshop.

Leon Petrosjan, Vladimir Mazalov, Vassili Kolokoltsov and William McEneaney
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Chapter 1

A ROBUST CONTROL APPROACH TO OPTION
PRICING: THE UNIQUENESS THEOREM

Pierre Bernhard® and Naima El Faroug?
'INRIA Sophia Antipolis-méditerranée, France
2University Blaise Pascal, Clermont-Ferrand, France

1. Introduction

In a series of papers starting with [4], and culminating, so far, with [6, 5, 7] we have devel-
oped a probability-free theory of option pricing, both for vanilla options and digital options.
The most comprehensive account of this theory is in the unpublished doctoral dissertation
of Stéphane Thiery [13]. A rather complete account is to appear in the volume [8].

The main claims of that new approach are, on the one hand, the possibility of construct-
ing a consistent theory of hedging portfolios with either continuous or discrete time trading
paradigms, the former being the limit of the latter for vanishing time steps, with one and the
same (continuous time) market model, and, on the other hand, to accommodate transaction
costs and closing costs in a natural way, with a nontrivial hedging portfolio.

It may also be argued that although it seems somewhat un-natural, still our market
model implies much less knowledge about the future market prices than the classical prob-
abilistic Samuelson model, used in the Black and Scholes theory. A discussion of the
strengths and weaknesses of the new approach, as well as of related contributions in the
literature, mostly [1] and [10], can be found in [7].

The reference [13] stresses that the last missing item is a uniqueness theorem for the
viscosity solution of a particular, highly degenerate, Isaacs Differential Quasi Variational
Inequality (DQVI). In the article [7], we got around that difficulty by resorting to a refined
form of Isaacs’verification theorem. However, on the one hand, this relies on the true,
but unpublished, fact that the viscosity condition implies satisfaction of our old “corner
conditions™ [3], and on the other hand, it is much less satisfactory than directly proving that
uniqueness.

In this article, we sketch the overall context and prove the uniqueness sought. Notice,
however, that the present proof does not account for the discontinuous payment digital
option, while that of [3] can be extended to that case, thanks to the concept of barrier.
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2. Modelization

2.1. Option Pricing

Our problem relates to an economy with a fixed, known, riskless interest rate p. In a clas-
sical fashion, all monetary values will be assumed to be expressed in end-time value com-
puted at that fixed riskless rate, so that, without loss of generality, the riskless rate can be
taken as (seemingly) zero.

We consider a financial derivative called option characterized by

- an exercize time, or initial maturity, 7" > 0,

- an underlying security, such as a stock or currency, whose price on the market is
always well defined. This price at time ¢ is usually called S(¢). As indicated above,
we shall use instead its end-time price u(t) = e?(T—t)S(t),

- a closure payment M (u(T)). Typical instances are M (u) = max{u — K,0} (for a
given exercize price K) for a vanilla call, or M (u) = max{K — u, 0} for a vanilla
put.

2.2. Market

We share with Roorda, Engwerda, and Schumacher [12, 11] the view that a market model is
a set {) of possible price trajectories, and we borrow from them the name of interval model
for our model. It is defined by two real numbers 7~ < 0 and 7+ > 0, and (2 is the set of all
absolutely continuous functions u(-) such that for any two time instants ¢; and %5,

o7 (t2—t) < ﬂQ_) & o™ (t2—t1) (2.1)
u(tl)

The notation 7¢ will be used to handle both 7+ and 7~ at a time. Hence, in that notation,
it is understood that ¢ € {—, +}, sometimes identified to {—1,+1}. We shall also let
(7w, 7*) = (min, |7¢|, max, |7¢|).

We shall make use the equivalent characterization

v=71u, u(0)=wuy, 7€/ ,7T]. 2.2)

In that formulation, 7(-) is a measurable function, which plays the role of the “control” of
the market. We shall let ¥ denote the set of measurable functions from [0, 7] into [7—, 77].
It is equivalent to specify a u(-) €Q ora (u(0), 7(-)) € R* x W. This is an a priori unknown
time function. The concept of nonanticipative strategies embodies that fact.

2.3. Portfolio

A (hedging) portfolio will be composed of an amount v (in end-time value) of underlying
stock, and an amount y of riskless bonds, for a total worth of w = v + y. In the normalized
(or end-value) representation, the bonds are seemingly with zero interest.
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2.3.1. Buying and Selling

We let £(t) be the buying rate (a sale if £(¢) < 0), which is the trader’s control. Therefore

we have, in continuous time,
v=TUv+E€. 2.3)

However, there is no reason to restrict the buying/selling rate, so that there is no bound on
&. To avoid mathematical ill-posedness, we explicitly admit “infinite” buying/selling rate
in the form of instantaneous block buy or sale of a finite amount of stock at time instants
chosen by the trader together with the amount. Thus the control of the trader also involves
the choice of finitely many time instants ¢; and trading amounts £, and the model must be

augmented with
v(tf) = v(ty) + &, (2.4)

meaning that v(-) has a jump discontinuity of size £ at time ¢;. Equivalently, we may keep
formula (2.3) but allow for impulses (¢t — tx) in &(+).

We shall therefore let £(-) € Z, the set of real time functions (or rather distributions)
defined over [0, T'] which are the sum of a measurable function £°(+) and a finite number of
weighted translated Dirac impulses £ 6(t — tg).

2.3.2. Transaction Costs

We assume that there are transaction costs. In this paper, we assume that they are propor-
tional to the transaction amount. But we allow for different proportionality coefficients for
a buy or a sale of underlying stock. Hence let C* (—C™) be the cost coefficient for a buy
(sale), so that the cost of a transaction of amount £ is C°¢ with ¢ = sign(£). We have
chosen C~ negative, so that, as it should, that formula always gives a positive cost.

We shall use the convention that when we write C¢ (expression), and except if other-
wise specified, the symbol € in C¢ stands for the sign of the expression. We shall also let
(Cx, C*) = (min, |C°|, max. |C*|).

Our portfolio will always be assumed self-financed, i.e., the sale of one of the com-
modities, underlying stock or riskless bonds, must exactly pay for the buy of the other one
and the transaction costs. It is a simple matter to see that the worth w of the portfolio then
obeys

Vt € (th—1,tk), w=71v—C€, w(tkg—1)= w(tk+_1) , (2.5)

between two jump instants, and at jump instants,

w(tf) = w(ty) — C*&. (2.6)

This is equivalent to

o~

w(t) = w(0) + [(7(s)v(s) — C°€(s))ds
(2.7)

[e=}
o~

=w(0) + [(r(s)v(s) — C¢*(s))ds — > C=*¢&.

k|t <t

o
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24. Hedging
24.1. Strategies

The initial portfolio is to be created at step 0. As a consequence the seller’s price is obtained
taking v(0) = 0. Then, formally, admissible hedging strategies will be functions ¢ : Q@ — =
which enjoy the property of being nonanticipative:

V(ui(-),ua()) €A X, [uiloy = u2ljon)] = [p(ui(-))ljo,g = @(u2(-))

(It is understood here that the restriction of (¢ — t) to a closed interval not containing t;
is 0, and its restriction to a closed interval containing ¢, is an impulse.)

In practice, we shall find optimal hedging strategies made of a jump at initial time,
followed by a state feedback law £(t) = ¢(t, u(t), v(t)).

We shall call ® the set of admissible trading strategies.

[O,t]]-

2.4.2. Closing Costs

The idea of a hedging portfolio is that at exercise time, the writer is going to close off its po-
sition after abiding by its contract, buying or selling some of the underlying stock according
to the necessity. We assume that it sustains proportional costs on this final transaction. We
allow for the case where these costs would be different from the running transaction costs
because compensation effects might lower them and also allow for the case without closing
costs just by making their rate 0. Let therefore ¢t < Ct and —¢~ < —C~ be these rates.

It is a simple matter to see that, in order to cover both cases where the buyer does or
does not exercise its option, the portfolio worth at final time should be N (u, v), given for a
call and a closure in kind by

N(u,v) = max{c*(—v), u — K + c(u —v)},

where the notation convention for c*(expression) holds. We expect that on a typical opti-
mum hedging portfolio for a call, 0 < v(T') < u(T'). Hence

N(u,v) = max{—c v, u— K +ct(u—v)}. (2.8)
In the case of a put, where —u(T") < v(T') < 0, we need to replace the above expression by
N(u,v) = max{—ctv, K —u—c (u+v)}. 2.9

The case of aclosure in cash is similar but leads to less appealing mathematical formulas
in later developments. The details can be found in [5].

2.4.3. Hedging Portfolio

An initial portfolio (v(0),w(0)) and an admissible trading strategy o, together with a price
history u(-), generate a dynamic portfolio. We set the following.

Definition 2.1. An initial portfolio (v(0) = 0, w(0) = wy) and a trading strategy @ consti-
tute a hedge at g if for any u(-) € Q such that u(0) = ug (equivalently, for any admissible
7(+)), the dynamic portfolio thus generated satisfies

w(T) = N(u(T),v(T)). (2.10)
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Now, we may use (2.7) at time T' to rewrite this:

T
vr() € ¥, N(u(T),v(T))+ ( T(t)(t) + C° (t))dt—wogo.
0
This in turn is clearly equivalent to
T
wo > sup |N(u(T),v(T)) +/( 7( )+ C* (t))
T()EY s

We further set the following.

Definition 2.2. The seller’s price of the option at ug is the worth of the cheapest hedging
portfolio at uy.

The seller’s price at ug is therefore

T
P(ug) = inf sup | N (uf )+/( 7(t)v +Cf§(t)) , @.11)

PEL ()ew .

where it is understood that v(0) = 0 and that £(-) = ¢ (ug, 7(+))-

3. Solving the Minimax Impulse Control Problem

3.1. The Related DQVI

We are therefore led to the investigation of the impulse control differential game whose
dynamics are given by (2.2), (2.3), and (2.4) and the criterion by (2.11). In a classical
fashion we introduce its Isaacs value function:

T

W(t,u,v) = ;IelgT?l)lg\p N(u(T),v(T)) —I—t/ s)+ C°¢(s ))ds:l (3.1)

where the dynamics are integrated from u(t) = w, v(t) = v. Hence the seller’s price is
P(UO) == W(O, Uup, 0)

There are new features in that game, in that, on the one hand, impulse controls are
allowed, and hence an Isaacs quasi-variational inequality (or QVI; see Bensoussan and
Lions [2]) should be at work, but, on the other hand, impulse costs have a zero infimum.
As a consequence, that QVI is degenerate, and no general result is available. In [6], we
introduce the so-called Joshua transformation that lets us show the following fact.
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Theorem 3.1. The function W defined by (3.1) is a continuous viscosity solution of the
following “differential QVI” (DQVI):

.{aw [aw (BW )J
0=min{ — 4+ max 7 +{—=—-1)v|,

ot TE€[T—, 7] Eu ov

3.2)
W ot y - CLUBNGE :
ov ov

W(T,u,v) = N(u,v).

This PDE in turn lends itself to an analysis, either along the lines of the Isaacs—
Breakwell theory through the construction of a field of characteristics for a transformed
game as in [6], or using the theory of viscosity solutions and the representation theorem
as outlined in [7]. The solution we seek may further be characterized by its behavior at
infinity. Yet its uniqueness does not derive from the classical results on viscosity solutions.

3.2. Representation

We introduce two functions (¢, u), a representation of the singular manifold, and w(t, u),
the restriction of I to that manifold, handled jointly as

_ o(t, u)
V(t, u) ('u')(t, u)) .

That pair of functions is entirely defined by a linear PDE that involves the following two
matrices (¢~ and g are defined hereafter in (3.4)):

tqt —7—g— + -
s= (1) mare i (Trore sory

10 - —¢ \—(r"—=77)¢"q ¢ —7Fq
and it seems to play a very important role in the overall theory. Namely,
Vi+T(Vyu—S8V)=0. (3.3)

The definitions of ¢+ and ¢q—, as well as the terminal conditions at T for (3.3), depend
on the type of option considered. For a simple call or put, and a closure in kind, we have

q (t) =max{(l+c )exp[r (T —¢t)] -1, C},

gt (t) =min{(1+cM)exp[rH(T—t)] -1, CT}. 34
Notice that ¢ = C* for t < t., with
1. 1+4C*
T-t.=—1 L
T ¢ n 1+c (3.5)
The terminal conditions are given, for a call, by
{ . K
1 X (0 KO) if u< m‘ 5
wru={ SFN-K g ENET)

ct —c™

(v u—K) if u>




A Robust Control Approach to Option Pricing: The Uniqueness Theorem p

and symmetric formulas for a put. (All combinations call/put, closure in kind/in cash, are
detailed in [5]). Standard techniques of hyperbolic PDE’s let us prove that that equation has

a unique solution with these terminal conditions. (See [13]).
In [7], we proved the following fact:

Theorem 3.2. The function W defined by the formula
W(t,u,v) = w(t,u) + ¢ (v(t,u) —v), € =sign(v —v), (3.7)

where q° is given by formula (3.4) (for a simple call or put), and (0 W) = V' is given by
(3.3) and the terminal conditions (3.6) for a call (and symmetrical formulas for a put) is a
viscosity solution of (3.1).

If the uniqueness of the viscosity solution can be proved, this implies that formula (3.7)
indeed provides the Value of the game problem, and hence solves the pricing problem via
P(ug) = W(0, up, 0). A huge computational advantage as compared to integrating (3.1).

3.3. Discrete Trading

We consider also the case where the trader is only allowed bulk trading (“impulses” in
the above setting) at predetermined instants of time ¢, = kh, k = 0,1,...,K, with h a
given time step and Kh = T'. Everything else remains unchanged, in particular the market
model. A problem interesting in its own right, and, we shall see, as an approximation to the
continuous trading solution.

A similar analysis leads to a discrete Isaacs equation,

Vk < K,V(u,v),

Wi (u, v) = min mmak, Wi (A7), A+7)(v+€) = 7(v + ) + C°¢], (3.8
TE|T 1Ty,

Y(u,v), Wg(u,v)= N(u,v).

A carefull analysis shows that its solution {W,?} ke{o,...,K} can be obtained via the fol-
lowing procedure. Notice first that g, := ¢°(t;) can be computed via the recursion

& == &
qK - c,
q;_% = (1+7)aq + 75, (3.9)
QGp1 = € min{sqi+% , eC*t}.
Then, let, for all integer ¢
o (u
Qi=(g 1), and V}(u)= (wf?((u)) ) (3.10)

Take ot (u) = 9(T, u), wft(u) = w(T, u) as given by (3.6) for a call (symmetrically for a
put) and

_ + yh +
Vh() = § 1 (_ 1_ +1 ) (Qli—i—lvl}cl—}—l((l""r—)u))‘ 3.11)
q - Qry1 Vi1 (L+77)u)
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We leave to the reader the tedious, but straightforward, task to check that this is indeed a
consistent finite difference scheme for (3.3). This provides our preferred fast algorithm to
compute the premiums in our theory. As a matter of fact, we claim the following:

Theorem 3.3. The solution of (3.8) is given by (3.9), (3.10), (3.11), and (3.6) for a call,

as
Wi (u, v) = Wi (u) + gi (5(uw) — v) = QRVE(uw) — giv, & = sign(9(u) — v).

Finally, the main theorem of [6], and a central result in that theory, is the following
convergence theorem. (Which can very probably be extended to a sequence h = T'/K,
K — o0 € N.) Let W"(t, u, v) be the Value function of the minimax problem where the
minimizer is allowed to make an impulse at the initial time ¢, and then only at the discrete
instants t; as defined above. It is an interpolation of the sequence {W,?} (This is the
correct definition of W" (¢, u, v). It only appears in [13]).)

Theorem 3.4. Choose h = T x 27 ™. Asn — oo in N, W" converges uniformly on any
compact to a viscosity solution W of the DQVI (3.2).

Since (3.11) can be viewed as a finite difference scheme for (3.3), it is clear that this
limit W is the same function W as given by (3.7). But here again, we need a uniqueness
theorem of the viscosity solution of (3.2) to conclude that the Value of the discrete trading
problem converges towards that of the continuous trading problem.

3.4. Uniqueness

At this point, we know that if the viscosity solution of the DQVI (3.2) can be proved unique,
we have both an interesting representation formula (3.7) for the value function of the con-
tinuous trading problem, and a fast algorithm (3.11) to approximate it via the Value function
of the discrete trading problem.

In order to exploit the technical result of the next section, we need to introduce a modi-
fied problem.

Let R be a fixed positive number, and R C R x R be the region u € [0, R], |v| < R.
For the time being, we consider only problems of option hedging where (u(0), v(0)) € R.

As a consequence, for these problems, and for all t € [0, T], we have u(t) < Re™ T.

Concerning v(-), the control £ might send it anywhere in R. But we know from the
analysis according to the Isaacs-Breakwell theory that the minimizing strategies never cre-
ate large v(t)’s. As a matter of fact, let W be the maximum payoff obtained by the strategy
¢ = 0 (after maximization in 7(-)) for any (up, v9) € R. Let a be a large number, chosen
satisfying a > 2 exp(77T)[Wy/(RC4) + 1], and S = aR. We claim the following:

Proposition 3.1. Any nonanticipative strategy ¢ that causes |v| > S is dominated by the
strategy ¢ = 0.

Proof. Let ( be a positive number, { < C, exp(—7"T)/47". Any nonanticipative strategy
¢ may be challenged by the control function generated by the following rule: If v(t — () >
S, choose 7(t) = 7~ ifv(t — ) < —R; choose T(t) = 7. Due to the small time delay



