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Preface

I laid the foundations for this Series in Volume 1.

The ground rules are very simple: colleagues reporting on new topics are asked
to give the rest of us an easily understandable historical perspective together with
their own critical comments on the literature for the period under review.
Colleagues reporting on continuing topics are simply expected to give a critical
review of the literature for the period. The period under consideration for this
volume is June 1999 to May 2001, and subsequent volumes will give biennial
coverage of the literature to May 2003 + »n, where n =0, 2, 4, 6, ...

Note my repeated use of the word ‘critical’. When the RSC and I market
researched this new SPR title, it quickly became apparent that colleagues were
not interested in a dull and uncritical compilation of literature references. Several
of them remarked (rather unkindly, I thought) that they could ask their PhD
students to sit at a networked PC, dial up Web of Science, and produce such a
comprehensive list by the end of a single afternoon. What they wanted was
critical insight into the recent literature.

That is what we are trying to give. There are still many gaps in coverage, and
I’m sure you will have your own ideas as to what is good and bad with this very
new title. Rather than grumbling to your colleagues and writing acidic book
reviews, why not volunteer your own expertise? 1 am always willing to listen to
constructive suggestions, and can be reached at

alan.Hinchliffe@umist.ac.uk

Volume 2 consists of eight contributions. Several are continuations from the
topics treated in Volume 1, some are new. A couple of existing Reporters in
Volume 1 asked to be excused for Volume 2, but will reappear in Volume 3. The
contributions are not in any particular order, other than the ‘new’ topics are
towards the start of the volume.

The molecular simulation of liquids is now a vast field of human endeavour,
and we open with a contribution on ‘Simulation of the Liquid State’ by David
Heyes. David captures the spirit of the SPR exactly when he writes .. .The ready
availability of fast computers has meant that there are many more researchers
working in this ever expanding field .. .[and] .. .I have restricted my discussion to
... areas that have interested me’.

Several people pointed out a gap in the coverage of Volume 1, namely the field
of enumeration. Nenad Trinajsti¢ and his co-workers have written our first chapter
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in this field, which strikes a nice balance between historical perspective and up-
to-the-minute literature.

Michael Springborg continues to report on the growth of density functional
theory.

Theodore Simos reported on the current status of atomic structure calculations
in Volume 1. He has broadened the scope a little for Volume 2, and reports on
progress in the solution of 1D, 2D and 3D differential equations in chemistry.

It was always my intention to include industrial applications. Much of this kind
of work never reaches the primary journals because of confidentiality restrictions
and commercial forces. I am very pleased to tell you that Richard Lewis has been
able to give us a fascinating glimpse into the world of commercial computer-aided
drug design, without apparently breaching a single one of his employer’s trade
secrets.

David Pugh continues his coverage of electric and magnetic properties. David
also gives us a historical insight into those rare beasts magnetizability and
hypermagnetizability.

Steven Wilson continues his coverage of many body perturbation theory, whilst
Paul Popelier and Paul Smith continue the story of recent advances in the theory
of quantum topological atoms.

Alan Hinchliffe
Manchester, 2001
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1

Simulation of the Liquid State

BY D.M. HEYES

1 Introduction

The molecular simulation of liquids is a now vast field of research, and as with
many others in recent years it is becoming increasingly difficult to keep abreast of
all of the significant developments that are taking place. The ready availability of
fast computers has meant that there are many more researchers working in this
ever expanding field of applications, producing ever larger amounts of work to
assimilate! This poses something of a problem when it comes to writing a review,
especially one with the rather ambitious title of ‘Computer Simulation of
Liquids’. I am not going to attempt to cover all the branches of this field. Rather,
in my review of the developments between 1999 and 2001 I have restricted my
discussion to a few areas that have interested me. The choice is inevitably
somewhat subjective, but hopefully by adopting this approach I will have a better
chance of producing a useful document, rather than a gallop through many topics
with only the briefest of discussion about each, which I am sure would be of little
use to the scientific community. There are a number of molecular simulation
books that describe the standard techniques, and these are recommended as
background material for the present article, e.g. refs. 1-7.

I am therefore not going to discuss the ‘nuts and bolts” of molecular simulation,
except to mention an often overlooked fact, which is the reason for much of the
success of these approaches. Most simulations are carried out still typically for
less than a thousand molecules, and if it was not for the use of periodic boundary
conditions (PBC) it would not be possible to simulate bulk systems with this
number of molecules. These systems would have such a high surface to volume
ratio that the results would be dominated by surface effects. The PBC procedure
is illustrated in Figure 1, which shows a two-dimensional square cell in which the
molecules are surrounded by image cells. A molecule near the cell boundary
interacts with the ‘real’ molecules in the central cell and with image cell
molecules. Molecules leaving the cell re-enter through the opposite face with the
same velocity.

Chemical Modelling: Applications and Theory, Volume 2
© The Royal Society of Chemistry, 2002
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Figure 1 Schematic representation of the Periodic Boundaries construction in two
dimensions. A particle from the central cell moves across a boundary (defined
by the arrow) and is replaced by an image of itself. The image then becomes a
‘real’ particle and the simulation continues uninterrupted
(Courtesy of Dr. C.A. Bearchell, Department of Chemistry, University of
Surrey)

2 Simple Liquids

The study of simple liquids can be said to be the beginning of Molecular
Dynamics and Monte Carlo in the 1950s and 60s. Although the scope of
molecular simulation, as a field or discipline, has widened dramatically since
then, there is nevertheless a continual interest in simple liquids. In fact, this is
partly due to the fact that the so-called ‘simple’ liquids are far from simple! One
of the motivations for the continual interest in the simple liquids is that, because
of the basic nature of the interparticle interactions, an improved understanding of
these systems should lead to better theoretical models, which can be extended to
more complex molecular liquids. Also, the rapid growth of interest in colloids
and polymers (so-called ‘complex’ liquids) in recent years has provided new areas
where the theories of simple liquids can be applied, especially those associated
with local structure and thermodynamics. In the latter case, phase equilibria and
the location of phase boundaries feature prominently. In this section, some of the
recent advances in our understanding of simple liquids are covered.

2.1 Dynamics. — Of course, within the category of ‘simple liquids’ studied by
statistical mechanics and molecular simulation, there are model liquids that are,
strictly speaking, not found in nature. For example, the ubiquitous hard sphere
fluid, where the pair potential has the form
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@(r) = oo, rso

=0, r>ao @2.1)

is a case in point. The energy is infinite on contact of the spheres (at o) and zero
for larger separations. This is the energy of interaction which would approximate
that of two macroscopically sized elastic spheres with high elastic modulus, say
two snooker or billiard balls. In these cases the length-scale of the particle
interactions is many orders of magnitude smaller than the particle diameter. One
of the main features of hard spheres is the co-ordination number. It has been
shown recently that for spheres at random close packing, the mean number of
particle contacts is 4.8, which is somewhat lower than has often been assumed
before (6, and even 12, have been used).® Interestingly these authors also
performed a computer ‘simulation’ in which they took a random test sphere, and
placed immobile point contacts on its surface. They determined the mean number
of points required on the surface of the sphere to eradicate the possibility of
translation of the test particle, which was found to be 2D + 1, where D is the
space dimension. Therefore, in 3D this ‘co-ordination number’ is 7, which is
lower than the value of 4.8, indicating that in states where the contacts are
‘correlated’ (i.e. in a dense liquid or glassy state) translational diffusion can be
removed by fewer contacts. The procedure for carrying out Metropolis Monte
Carlo of hard spheres is particularly simple, as the Boltzmann factor does not
require specific evaluation — just overlap detection. Jater proposed an improved
Metropolis Monte Carlo algorithm to simulate hard core systems, in which they
replaced the usual sequence of single particle trial displacements by a collective
trial ‘move’ of a chain of particles.’

The hard-sphere system is widely used in statistical mechanics as a reference
state in theories of liquids and solids. Its uses have traditionally been quite broad,
extending from equations of state, the structure of molecular liquids and
dynamical properties. As mentioned already, it has also found a new lease of life
as a model reference system for some colloids and granular materials. Simple
molecules (e.g. water) interact with an appreciable attractive tail extending
beyond the hard core, and which usually has more or less the same range as the
core. It is not possible to find a simple molecule that does not have an appreciable
attractive or van der Waals region as well as a hard repulsive core. In contrast, on
the micron and larger scale, for these systems, the hard-sphere can be an even
more realistic representation of the effective pair potential, which can be steeply
repulsive and have a negligible attractive component. It must be borne in mind,
however, that the hard-sphere particle potential is fundamentally unrealistic in that
its pair potential is discontinuous and non-differentiable unlike those for all real
systems. Considerable care is therefore required in extrapolating from any steeply
repulsive potential, made progessively steeper, to the hard-sphere potential. This
is because many quantities diverge either to zero or infinity according to the order
in which the limit is made, of potential steepness and number of particles etc.,
any of which factors may be significant. Non-physical results such as purely
exponential and delta function time correlation functions may be generated. These



