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Preface

A major mechanism by which cells regulate protein function is to place
phosphate groups on serine and threonine residues. Though the steady-state
level of protein phosphorylation depends on the relative activities of both
kinases and phosphatases, a much greater effort has previously gone into the
study of the former that the latter. Today, however, there is an increasing
appreciation for the role that protein phosphatases play in the dynamic pro-
cess of protein phosphorylation. To date, there are four major types of protein
serine/threonine phosphatase catalytic subunits, designated protein phosphatase
type 1, 2A, 2B, and 2C. Each has been identified by the techniques of protein
chemistry and enzymology and can be distinguished from one another by their
preference for specific substrates as well as their sensitivity to certain activa-
tors and inhibitors.

Protein Phosphatase Protocols has been assembled in response to the
growing interest these enzymes are receiving. The goal of this compilation is
to provide a "how-to" experimental guide to aid newcomers as well as sea-
soned veterans in their research endeavors, thus further contributing towards
our ever increasing knowledge of serine/threonine phosphatases.

What you have before you contains contributions by many of the current
and emerging leaders in the field. To highlight just a few, these chapters con-
tain step-by-step information on how to isolate novel phosphatases and regu-
latory subunits, assay for activity, and generate immunological reagents for
both biochemical and biological characterization of these enzymes. Though it
is obviously not possible to include contributions by each and every researcher
in this field, every effort was made to be inclusive, and avoid being exclusive,
regarding the methods used to investigate these phosphatases. We hope that
you find our work both informative and thought provoking.

John W. Ludlow
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1

Prokaryotic Protein-Serine/Threonine Phosphatases

Peter J. Kennelly

1. Introduction

1.1. Prokaryotic Protein-Serine/Threonine Phosphatases:
A Brief Review

1.1.1. Why Study Protein Phosphorylation Events in Prokaryotes?

As this chapter deals with the protein-serine/threonine phosphatases of
prokaryotic organisms, some comments on the role of prokaryotes in the study
of these important enzymes would appear to be in order. Prokaryotic organ-
isms dominate the living world. They represent by the largest source of biomass
on the planet, forming the indispensable foundation of the food chain upon
which all other living organisms depend. They are the exclusive agents for
carrying out biological nitrogen fixation, and are responsible for the majority
of the photosynthetic activity that generates the oxygen we breath. In absolute
numbers, in number of species, in range of habitat, and in the spectrum of their
metabolic activities, the prokaryotes far outpace their eukaryotic brethren.
More immediately, in humans prokaryotes perform essential functions in the
digestion and assimilation of nutrients, whereas infection by bacterial patho-
gens can lead to illness or death.

The intrinsic biological importance of prokaryotic organisms in the bio-
sphere renders them important and interesting objects of study (7). Be that as it
may, the question remains as to why protein phosphorylation in prokaryotes
should be of interest to “mainstream” signal transduction researchers whose
attention has long been fixed on humans and other higher eukaryotes. At least
part of the answer lies in the recent realization that prokaryotes and eukaryotes
employ many of the same molecular themes for the construction and operation
of their protein phosphorylation networks (2,3). Virtually every major family
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2 Kennelly

of protein kinases or protein phosphatases identified in eukaryotic organisms
possesses a prokaryotic homolog(s), and vice versa. Consequently, the prokary-
otes represent a voluminous library of fundamentally important, universally
applicable information concerning the structure, function, origins, and evolu-
tion of protein kinases, protein phosphatases, and their target phosphoproteins.
In addition, prokaryotes offer significant advantages as venues for the study of
protein kinases and protein phosphatases, particularly with regard to dissecting
their physiological functions and the factors that influence them. Prokaryotes
carry out their life functions and the regulation thereof utilizing a many-fold
smaller suite of genes and gene products than does the typical eukaryote.
Although they employ molecular mechanisms as subtle and sophisticated as
any found in “higher” organisms, the fewer “moving parts” in the prokaryotes
materially facilitates the design, execution, and analysis of molecular genetic
experiments. In addition, their robustness in the face of a wide range of nutri-
tional and environmental challenges greatly facilitates the identification and
analysis of resulting phenotypes. The prokaryotes thus represent a rich and
presently underutilized tool for understanding the fundamental principles gov-
erning the form and function of protein phosphorylation networks.

1.1.2. Not All Prokaryotes Are Created Equal:
A Brief Outline of Phylogeny

Most readers of this chapter were taught that all living organisms could be
grouped into two phylogenetic domains whose names were often given as the
eukaryotes and the prokaryotes (4). However, these latter terms actually refer
to a morphological classification, not a genetic/hereditary one (5). The term
eukaryote describes those organisms whose cells manifest internal compart-
mentation, more precisely the presence of a nuclear membrane. The prokary-
otes include all organisms lacking such intracellular organization, in other
words everything that is not a eukaryote. Early studies of phylogeny based on
the first protein sequences, the gross structural and functional characteristics
of key macromolecules, the architecture of common metabolic pathways, and
so forth, suggested that this morphological classification of living organisms
paralleled their hereditary relationships. However, as researchers gained facil-
ity with the isolation, sequencing, and analysis of DNA, a truly genetic out-
line of phylogeny has emerged, one that groups living organisms into three
distinct phylogenetic domains—the Eucarya, Bacteria, and Archaea (Archae-
bacteria) (6).

Whereas the prior supposition that the eukaryote morphological phenotype
characterized members of a coherent phylogenetic domain—the Eucarya—
proved correct, molecular genetic analysis revealed that the prokaryotes segre-
gated into two distinct and very different domains: the Bacteria and the
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Archaea. The domain Bacteria includes essentially all of the prokaryotic
organisms one encounters in a typical microbiology course: E. coli, Salmo-
nella, Pseudomonas, Rhizobium, Clostridia, Staphylococcus, Bacillus, Ana-
baena, and so on. The domain Archaea, on the other hand, is populated largely
by extremophiles that occupy habitats whose heat, acidity, salinity, or oxygen
tension render them hostile, if not deadly to other living organisms. However,
it would be wrong to suppose that the Archaea are simply a set of unusual bacte-
ria. Examination of the genes encoding their most fundamentally important
macromolecules, ranging from DNA polymerase to ribosomal RNAs, make it
clear that the Archaea have much more in common with the Eucarya than they
do with the superficially-similar Bacteria (6,7). The earliest detectable branch
point in the evolutionary time line resulted in the segregation of the Bacteria
away from the organism that eventually gave rise to both the Eucarya and the
Archaea. The common progenitor of these latter domains then evolved for a con-
siderable period following this first bifurcation. As a consequence, many investi-
gators believe that present day archaeons still possess numerous features reflective
of ancient proto-eukaryotes (7). This combination of prokaryotic “simplicity”
with high relatedness to medically relevant eukaryotes render the Archaea a par-
ticularly intriguing target for the study of protein phosphorylation phenomena.

1.1.3. Prokaryotic Protein-Serine/Threonine
Phosphatases Identified to Date

When one considers that the modification of prokaryotic proteins by phos-
phorylation-dephosphorylation first was reported nearly 20 yr ago (8—10),
surprisingly little is known about the enzymes responsible for the hydrolysis of
phosphoserine and phosphothreonine residues in these organisms. The first
prokaryotic protein-serine/threonine phosphatase to be identified and charac-
terized was the product of the aceK gene in E. coli (11). This gene encodes a
polypeptide that contains both the protein kinase and protein phosphatase
activities responsible for the phosphorylation-dephosphorylation of isocitrate
dehydrogenase. Today, AceK remains an anachronism by virtue of its hermaph-
roditic structure, and because the sequences of its protein kinase and protein
phosphatase domains are unique, exhibiting no significant resemblance to other
protein kinases or protein phosphatases (12).

The next prokaryote-associated protein-serine/threonine phosphatase to be
discovered was ORF 221 encoded by bacteriophage A (13,14). This enzyme,
and a potential protein encoded by an open reading frame in bacteriophage
¢80, exhibit significant sequence homology with the members of the PP1/2A/2B
superfamily, one of the two major families of eukaryotic protein-serine/threo-
nine phosphatases (15). Whereas this represented the first discovery of a
eukaryote-like protein phosphorylation network component having any asso-
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ciation with a prokaryotic organism, the mobility and malleability of viral vec-
tors begged the question of whether the genes for these protein phosphatases
were bacterial in origin. Moreover, it remains unclear to what degree a protein
phosphatase from a pathogen can shed light on how bacterial proteins are
dephosphorylated under normal physiological circumstances.

More recently, two unambiguously bacterial enzymes have been described
that possess protein-serine/threonine phosphatase activity. The first, [phP from
the cyanobacterium Nostoc commune (16), is a dual-specificity protein phos-
phatase that acts on phosphoseryl, phosphothreonyl, and phosphotyrosyl pro-
teins in vitro (17). Like other dual-specific protein phosphatases, IphP contains
the characteristic HAT (His-Cys-Xaas-Arg, or His-Arg-Thiolate) active site
signature motif characteristic of protein phosphatases capable of hydrolyzing
phosphotyrosine (18). The second is SpollE from Bacillus subtilis, a bacterial
homolog of the second major family of “eukaryotic” protein-serine/threonine
phosphatases, the PP2C family (19,20).

“Eukaryotic” protein-serine/threonine phosphatases have been uncovered in
the Archaea as well. In the author's laboratory a protein-serine/threonine phos-
phatase, PP1-arch, has been purified, characterized, cloned, and expressed from
the extreme acidothermophilic archaeon Sulfolobus solfataricus (21,22). This
protein is a member of the PP1/2A/2B superfamily, with whose eukaryotic
members it shares nearly 30% sequence identity (22). Surveys of two other
archaeons, which are phylogenetically and phenotypically distinct from S.
solfataricus, the halophile Haloferax volcanii and the methanogen Methano-
sarcina thermophila TM-1, indicate that PP1-arch from S. solfataricus is the
first representative of what may prove to be a widely distributed family of
archaeal protein-serine/threonine phosphatases (23,24). This recently has been
confirmed at the sequence level through the cloning of a second form of PP1-
arch from M. thermophila via the polymerase chain reaction (PCR).

1.1.4. Limited Applicability of Cohen’s Scheme
to the Classification Prokaryotic Protein-Serine/Threonine Phosphatases

Recent experience with prokaryotic protein phosphatases has revealed that
Cohen’s criteria for classifying the protein-serine/threonine phosphatases can-
not be extrapolated with confidence to prokaryotic enzymes. To briefly review,
in the early 1980s, Cohen and coworkers compiled a set of functional attributes
characteristic of each of the major protein-serine/threonine phosphatases found
in eukaryotes (25). These attributes included their preference for dephosphory-
lating the a- vs the B-subunit of phosphorylase kinase, their sensitivity to the
heat-stable inhibitor proteins I-1 and I-2, and the (in)dependence of their cata-
lytic activity on the presence of divalent metal ions such as Mg?*, Mn?*, or
Ca?". In later years sensitivity to potent microbial toxins—such as microcystin-
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LR, okadaic acid, and tautomycin—that inhibited the activity of PP1 and PP2A
were added to the list (26). While this scheme soon was adopted as standard for
the classification of eukaryotic protein-serine/threonine phosphatases, attempts
to apply it to prokaryotic enzymes have met with mixed success. For example,
PPl-arch from S. solfataricus is okadaic acid-insensitive and requires exog-
enous divalent metal ions for activity (21). Under Cohen’s scheme, this would
classify it as a member of the PP2C family. However, the amino acid sequence of
PP1-arch clearly places it in the PP1/2A/2B superfamily (22). The same holds
true for another divalent metal ion-dependent, okadaic acid-insensitive PP1/2A
homolog, ORF 221 from bacteriophage A (14).

1.2. An Overview of Methods
for Assaying, Purifying, and Identifying Clones
of a Prokaryotic Protein-Serine/Threonine Phosphatase, PP1-Arch

We use [32P]phosphocasein that has been phosphorylated using the catalytic
subunit of the cAMP-dependent protein kinase (27) as a general-purpose sub-
strate for the assay of protein-serine/threonine phosphatase activity in pro-
karyotic organisms. Although it is a eukaryotic phosphoprotein, all of the
prokaryotic protein-serine/threonine phosphatases that have been studied
(16,17,21-24), as well as the ORF 221 protein-serine/threonine phosphatase
from bacteriophage A (14), hydrolyze phosphocasein at a usefully high rate in
vitro. Its major virtue resides in the fact that it is readily prepared in quantity by
procedures that are simple and economical with regard to both effort and
expense. The major drawback of phosphocasein is the very high quantity of
unlabeled phosphate that is already bound to it, which renders it unsuitable for
determining kinetic parameters. However, for routine applications—those
requiring knowledge of the relative protein phosphatase activity present in a
sample such as surveying cell homogenates or column fractions, screening
potential activators or inhibitors, and so on—phosphocasein is entirely suitable.

For the assay of PP1-arch, a sample of protein phosphatase is incubated with
[*2P]phosphocasein in the presence of a divalent metal ion cofactor and a pro-
tein carrier, bovine serum albumin (BSA). Inclusion of the divalent metal ion
cofactor is very important. Every PP1/2A homolog characterized to date in
both the Archaea (21,23,24) and bacteriophage A (14) requires divalent metal
ions for activity, as does the bacterial PP2C homolog SpollE (20). (Eukaryotic
PP1 is a metalloenzyme (28), but it normally binds divalent metal ions in a
sufficiently tenacious manner to render the addition of exogenous cofactors
unnecessary.) In the author's experience, Mn?* has proven the most efficacious
and general cofactor. However, activation by Co?*, Ni?*, or Mg?* has been
observed on occasion (21,23,24). The assay is terminated by adding trichloro-
acetic acid (TCA) and centrifuging. With the assistance of the BSA carrier, the



