SUBRATA DASGUPTA

— WITH —

BABBAGE

THE GENESIS OF COMPUTER SCIENCE

It Began with Babbage

THE GENESIS OF COMPUTER SCIENCE

Subrata Dazsgupm

Q_

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide.

Oxford New York

Auckland Cape Town Dares Salaam HongKong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Iraly Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trademark of Oxford University Press
in the UK and certain other countries.

Published in the United States of America by
Oxford University Press
198 Madison Avenue, New York, NY 10016

© Oxford University Press 2014

All righs reserved. No part of this publication may be reproduced, stored ina

retrieval system, or transmitted, in any form or by any means, without the prior

permission in writing of Oxford University Press, or as expressly permitted by law,

by license, or under terms agreed with the appropriate reproduction rights organization.
Inquiries concerning reproduction outside the scope of the above should be sent to the Rights
Department, Oxford University Press, at the address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

Library of Congress Cataloging-in-Publication Data

Dasgupta, Subrata.

It began with Babbage : the genesis of computer science / Subrata Dasgupra.
pages cm

Includes bibliographical references.

ISBN 978-0-19-930941-2 (alk. paper)

1. Computer science—History—19th century. 2. Computer science—History—20ch century.

I Tide. II. Title: Genesis of computer science, 1819-1969.

QA76.17.D36 2014

004.09—dc23

2013023202

987654321
Printed in the United States of America
on acid-free paper

IT BEGAN WITH BABBAGE

AL, 7 B SE BEPDFIE U7 IA) : www. ertongbook. com

To Amiya Kumar Bagchi

Acknow/edgmmts

IN RETROSPECT, I now realize that this book on the genesis of computer science had its
own genesis somewhere in my subconscious in summer 1977, when I was a visiting sci-
entist in the Cambridge University Computer Laboratory. There, I had my first of many
meetings with Maurice Wilkes, and it is also where I met David Wheeler. Twenty-eight
years earlier, Wilkes, Wheeler, and their colleagues had designed and built the EDSAC,
the world’s first fully operational stored-program computer. As a graduate student, I had
become scriously interested in the history and cognitive nature of scientific creativity, but
computer science seemed different. For one thing, unlike physics, chemistry, or biology,
the history of which stretched back centuries, the originators of computer science were,
mostly, still living and active. When talking to Wilkes and Wheeler that summer, two
pioneers, I was privy to a kind of oral history of our discipline.

Throughout the succeeding decades, my interest in the history and cognitive nature
of science meandered in different directions, but I continued to think about computer
science. Under the influence of Herbert Simon’s The Sciences of the Artificial, I came to
glimpse something about the nature of the discipline. I remember a conversation with
B. Chandrasckaran of Ohio State University sometime during the early 1980s when we
were, briefly, colleagues. Chandra said that computer science still had no intellectual tra-
dition in the manner of physics or mathematics or chemistry. This obscurely disturbed
me, but other preoccupations both within and outside computer science prevented me
from pursuing this issue which, it seemed, required serious inquiry.

In November 2010, Wilkes passed away, and his death prompted me to give a lec-
ture about him titled “The Mind of a Computer Pioneer” in the Center for Advanced

Computer Studies at my university. After the talk, some graduate students approached

X

X o Acknowledgments

me to offer a seminar course on the birth of computer science. An early draft of this book
formed the basis for the course, which I taught in Fall 2011.

SoIam indebted to Duane Huval, Charles LeDoux, Craig Miles, and the late Michael
Sharkey for stimulating me in writing this book. They were the “first responders” to its
contents. Their feedback was most valuable.

[have had the good fortune of many conversations with Maurice Wilkes, and conver-
sations and lengthy e-mail discussions with the Herbert Simon, a polymath for our times
on the origins of artificial intelligence. I was also privileged to know Donald Cardwell,
historian of science and technology, when I was teaching at the University of Manchester
Institute of Science and Technology during the early 1990s. These encounters have
shaped my thinking, in different ways, on the historical, cognitive, and creative aspects
of science, especially computer science. I have no doubt that their influence on me has
found its way into this book.

I thank Simon Lavington, who made available to me a scarce, historical account of the
Manchester University computers and for allowing me to read an unpublished paper by
him on the Manchester machines. I thank D. F. Hartley for information on the academic
status of computing during its earlier days in Cambridge.

Three anonymous reviewers, who read first drafts of the first few chapters on behalf of
the publisher, offered very thoughtful comments. I thank them, as well.

Thank you, Jeremy Lewis, my editor at Oxford University Press who has been with this
project from the day he received my first communication. It has been a pleasure working
with him.

Thanks to Erik Hane, also of the editorial staff at Oxford University Press for all
his help.

Thank you Terry Grow, a young artist who produced the images that appear in
this book.

Bharathy Surya Prakash supervised all stages of the physical production of the book.
Her professionalism was noteworthy. I thank her and her production team.

My thanks to Oxford University Press for giving me permission to adapt two dia-
grams (Figure 8.5, p. 135; Figure 87, p. 147) from Technology and Creativity (1996)
authored by me.

Finally, as always, thank you Mithu, Deep, and Shome.

IT BEGAN WITH BABBAGE

AL, 7 B SE BEPDFIE U7 IA) : www. ertongbook. com

Contents

Acknowledgments ix

134

Prologue 1
1. Leibniz’s Theme, Babbage's Dream 9
2. Weaving Algebraic Patterns 17
3. Missing Links 28
4. Entscheidungsproblem: What'sin a Word? 44
s. Toward a Holy Grail 60
6. Intermezzo 83
7. A Tangled Web of Inventions 89
8. A Paradigm Is Born 108
9. A Liminal Artifact of an Uncommon Nature
10. Glimpses of a Scientific Style 149
11. 1 Compute, Therefore I Am 157
12. “The Best Way to Design...” 178
13. Language Games 190
14. Going Heuristic 225
15. An Explosion of Subparadigms 241
16. Aesthetica 265

Epilogue 277
DRAMATIS PERSONAE 287

BIBLIOGRAPHY 295
INDEX 311

vii

Prologue

L

IN 1819, A young English mathematician named Charles Babbage (1791-1871) began to
design a machine, the purpose of which was to compute and produce, fully of its own
steam, certain kinds of mathematical tables. Thus came into being the idea of automatic
computation—performing computations without human intervention—and an intellec-
tual tradition that eventually gave birth to a brand new and very curious scientific disci-
pline that, during the late 1960s, came to be called computer science. This book tells the
story of its genesis, a long birth process spanning some 150 years, beginning with Babbage
and his dream of automatic computation.

The focus of every science (in fact, every intellectual discipline) is a certain kind of
reality, a certain class of phenomena. The focus of computer science is the phenome-
non called computation, which refers both to a concept and an activity that is associated
historically with human thinking of a certain kind. The Latin root of the English word
compute is computare—meaning, reckoning, calculating, figuring out. Thus, according to
etymology, computation refers to the idea and the act of reckoning or calculating.

Etymologically, then, computation’s domain would seem to be the realm of numbers.
However, as we will see, we have come a long way from this association. We will see that
the domain of computation actually comprises symbols—by which I mean things that rep-
resent other things (for example, a string of alphabetic characters—a word—that represent
some object in the world, or a graphical road sign that represents a warning to motorists).
The act of computation is, then, symbol processing: the manipulation and transformation
of symbols. Numbers are just one kind of symbol; calculating is just one kind of sym-

bol processing. And so, the focus of automatic computation, Babbage’s original dream,
p g g 8

2 @ It Began with Babbage

is whether or how this human mental activity of symbol processing can be performed
by (outsourced to) machines with minimal human intervention. Computer science as

the science of automatic computation is also the science of automatic symbol processing.

IT

However, computer science is not a natural science. It is not of the same kind as, say,
physics, chemistry, biology, or astronomy. The gazes of these sciences are directed toward
the natural world. In contrast, the domain of computer science is the artificial world, the
world of made objects, artifacts—in particular, ones that perform computations. Let us
call these computational artifacts.

Now, the natural scientist, when practicing her science, is concerned with the world
as it is. As a scientist she is not in the business of deliberately changing the world. The
astronomer looking through a telescope at the galaxies does not desire to change the uni-
verse but to understand it, explain it; the paleontologist examining rock layers in search
of fossils is doing so to know more about the history of life on carth, not to change the
earth (or life) itself. For the natural scientist, to understand the natural world is an end
in itself. The desire is to make nature intelligible.’ The computer scientist also wishes to
understand, although not through nature but through computational artifacts; however,
that wish is a means to an end, for she wants to a/ter the world in some aspects by creating
new computational artifacts as improvements on existing ones, or by creating ones that
have never existed before. If the natural scientist is concerned with the world as iz is, the
computer scientist obsesses with the world as she thinks i ought to be.

This, of course, highlights the venerable philosophical distinction between 7s and
ought. We might say that computer science is a science of the ought in contrast to a natural

science such as evolutionary biology, which is a science of the is.

111

Computer science is not unique because of this “oughtness,” nor does its curious nature
lie in this. In 1969, the polymath scientist and economics Nobel laureate Herbert Simon
(1916—2001) pointed out that the main characteristic of artifacts is that they come into
existence with a purpose and, consequently, the sciences that deal with artifacts—in his
term, the “sciences of the artificial*”—are concerned with purpose (or goals), and in this
sense they stand apart from the natural sciences. The objects of nature have no purpose.
They just are. We don’t ask about the purpose of the moon or the stars, of rocks or fos-
sils, of oxygen or nitrogen. They just exist. It is true that anatomists and physiologists ask
questions about the function of a particular organ or process in a living organism, but such

functions are attributes that belong to some organ or life process as an outcome of natural

Prologue _0o3

evolution. They do not signify some prior purpose originating in the mind of a creative
being. Artifacts, in contrast, have prior reasons for existence, reasons that were lodged in
human minds prior to the beginning of artifact making. Thus, the sciences of the artificial
must concern themselves with the characteristics of artifacts as they are related to the
purposes as intended for them by their (earthly) creators. The structure and behavior of an
artifact is meaningful only in respect to its purpose. Artifacts are zmbued with purpose,
reflecting the purposes or goals imagined for them by their human creators.

This is why a material artifact can never be explained solely in terms of natural laws
even though the artifact must obey such laws. To explain or understand an artifact, even
something as apparently simple as a piece of pottery, one must ask: What is it for? What
does it do? What was the potter’s intention?

This is why a computational artifact such as one’s laptop can never be explained only
by the laws of physics, even though the laptop’s circuits and hard drive obey such laws.
A computational artifact is intended to serve some purpose, and physics has nothing to
say about purpose. Computer science is a science of the artificial. It must, therefore, embody
principles, laws, theories, models, and so forth, that allow an explanation of how its struc-
ture and behavior relate to intended goals.

Computer science, then, involves the human mind in two ways. First, as we have
noted, it is concerned with how artifacts can perform the mental activity of symbol pro-
cessing. Second, as a science of the artificial, it must have a place in it for the minds of the
human creators of computational artifacts—and how their imagined goals and purposes

are transformed into artifactual forms.

v

Of course, computer science is not the only science of the artificial. There are many dis-
ciplines that deal with the world of artifacts, that are concerned with changing the world
to a preferred state, with pursuing the ought rather than the is. Some of them are of
much earlier vintage than computer science. They include, for example, the traditional
engineering disciplines—civil, mechanical, electrical, chemical, and metallurgical; they
include architecture and industrial design. Others of more recent vintage include genetic
engineering, biotechnology, and digital electronics design. Their concerns are, almost
without exception, material artifacts: structures, machine tools, internal combustion
engines, manufacturing and processing equipment, metals, alloys and plastics, aircraft,
electronic systems, drugs, genetically modified organisms, and so forth.

Computer science stands apart because of the peculiarity of its artifacts. In fact, they
are of three kinds.

They can be material objects—the physical computer system. These artifacts clearly
resemble the material artifacts just mentioned because, like them, they obey the laws of

physics and chemistry. They consume power, they generate heat, there is some physical

4 o It Began with Babbage

motion involved, they decay physically and chemically over time, they have material
extension, they occupy physical space, and their activities consume physical time.

Computational artifacts, however, can also be completely abstract, existing only as symbol
structures (made visible on physical media such as paper or the computer screen). They are
intrinsically devoid of any physical meaning. The laws of physical nature do not apply to them.
As we will see, things called algorithms and purely mathematical machines called Turing
machines exemplify such artifacts. Because they are abstract, once created they exist for ever.
“They neither spin nor toil” in the physical world. They occupy no physical space nor do their
activities consume physical time; rather, they live in their own abstract space—time frame.

Abstract computational artifacts such as algorithms resemble mathematical symbol
structures (for example, algebraic equations, geometric objects) except that mathemati-
cal artifacts have no space-time characteristics at all, neither physical nor abstract.

The third kind of computational artifact is arguably the most interesting and unique
of all. These artifacts are in between the material and the abstract. They themselves are
abstract, yet their existence and usefulness depend on an underlying material substrate.
We will call these liminal artifacts.? Computer programs and the entities called computer
architectures are prime instances of this category; they themselves are abstract, yet they
must have underlying material computational artifacts as substrates to make them useful
or usable (just as the mind needs the brain for its existence).

Computer science, thus, must deal with computational artifacts that straddle the
material, the abstract, and the liminal. Each of these types of artifacts can be studied, ana-
lyzed, understood, explained, and created autonomously, just as the mind and the brain
can be studied autonomously, but—as in the case of the mind and the brain—only up
to a point, because these classes of artifacts form symbiotic relationships: the abstract with
the liminal, the liminal with the material. In fact, as we will see, automatic computation
involves the constant interplay between the abstract, the liminal, and the material.

All of this separates computer science from most other sciences of the artificial —what
makes computer science so peculiar, so curious, so distinctive. Because of the abstract and
liminal artifacts, the laws governing computational artifacts are, in part only, physical
laws. In fact, in a certain sense, the laws of nature are almost marginal in computer science.
It is the abstract and the liminal artifacts that have come to dominate computer science,
and their laws are necessarily of an entirely different nature. This raises the issue: What is

the nature of the science in computer science?

The answer, in detail, is the story this book will tell. But, we must pause here on the
concept of science itself. The sciences of the artificial differ from the natural sciences
because the latter is concerned with natural phenomena and the former with the world of

artifacts; they differ because the former 72ust factor in purpose into the discourse whereas

