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Preface

The London Taught Course Centre (LTCC') for PhD students in the Math-
ematical Sciences has the objective of introducing research students to a
broad range of advanced topics. For some students, these topics might
include one or two in areas directly related to their PhD projects, but the
relevance of most will be much less clear or even apparently non-existent.
However, all of us involved in mathematical research have experienced that
extraordinary moment when the penny drops and some tiny gem of infor-
mation from outside one’s immediate research field turns out to be the key
to unravelling a seemingly insoluble problem, or to opening up a new vista
of mathematical structure. By offering our students advanced introductions
to a range of different areas of mathematics, we hope to open their eyes to
new possibilities that they might not otherwise encounter.

Each volume in this series consists of chapters on a group of related
themes, based on modules taught at the LTCC by their authors. These
modules were already short (five two-hour lectures) and in most cases the
lecture notes here are even shorter, covering perhaps three-quarters of the
content of the original LTCC course. This brevity was quite deliberate on
the part of the editors: we asked contributors to keep their chapters short
in order to allow as many topics as possible to be included in each volume,
whilst keeping the volumes digestible. The chapters are “advanced intro-
ductions”, and readers who wish to learn more are encouraged to continue
elsewhere. There has been no attempt to make the coverage of topics com-
prehensive. That would be impossible in any case — any book or series of
books which included all that a PhD student in mathematics might need
to know would be so large as to be totally unreadable. Instead, what we
present in this series is a cross-section of some of the topics, both classical
and new, that have appeared in LTCC modules in the nine years since it
was founded.



vi Preface

The present volume covers the general area of algebra, logic and
combinatorics. The main readers are likely to be graduate students and
more experienced researchers in the mathematical sciences, looking for
introductions to areas with which they are unfamiliar. The mathematics
presented is intended to be accessible to first year PhD students, whatever
their specialised areas of research, though we appreciate that how “ele-
mentary” or “advanced” any particular chapter appears to be will differ
widely from reader to reader. Whatever your mathematical background,
we encourage you to dive in, and we hope that you will enjoy reading these
concise introductory accounts written by experts at the forefront of current
research.

Shaun Bullett, Tom Fearn, Frank Smith
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Chapter 1

Enumerative Combinatorics

Peter J. Cameron

School of Mathematical Sciences,
Queen Mary Unwversity of London, London E1 4NS, UK"
pjc20@st-andrews. ac.uk

This chapter presents a very brief introduction to enumerative combi-
natorics. After a section on formal power series, it discusses examples
of counting subsets, partitions and permutations; techniques for solving
recurrence relations; the inclusion—exclusion principle; the Mdbius func-
tion of a poset; g-binomial coefficients; and orbit-counting. A section on
the theory of species (introduced by André Joyal) follows. The chapter
concludes with a number of exercises, some of which are worked.

1. Imntroduction

Combinatorics is the science of arrangements. We want to arrange objects
according to certain rules, for example, digits in a sudoku grid. We can
break the basic question into three parts:

e [s an arrangement according to the rules possible?
e If so, how many different arrangements are there?
e What properties (for example, symmetry) do the arrangements possess?

Enumerative combinatorics provides techniques for answering the second
of these questions.

Unlike the case of sudoku, we are usually faced by an infinite sequence
of problems indexed by a natural number n. So if a, is the number of
solutions to the problem with index n, then the solution of the problem is
a sequence (ag, ai, . ..) of natural numbers. We combine these into a single

*Current address: School of Mathematics and Statistics, University of St Andrews, North
Haugh, St Andrews KY16 9SS, UK.



2 Peter J. Cameron

object, a formal power series, sometimes called the generating function of
the sequence. In the next section, we will briefly sketch the theory of formal
power series.

For example, consider the problem:

Problem 1. How many subsets of a set of size n are there?

Of course, the answer is 2. The generating function is
Soran= 1
e 1—2z
Needless to say, in most cases we cannot expect such a complete answer!

In the remainder of the chapter, we examine some special cases, treating
some of the important principles of combinatorics (such as counting up to
symmetry and inclusion-exclusion).

An important part of the subject involves finding good asymptotic esti-
mates for the solution; this is especially necessary if there is no simple for-
mula for it. Space does not permit a detailed account of this; see Flajolet
and Sedgewick [4] or Odlyzko [10].

The chapter concludes with some suggestions for further reading.

To conclude this section, recall the definition of the binomial coefficients:

n\ nn-1)...(n—k+1)
(k>_ k(k—1)...1 '
A familiar problem of elementary combinatorics asks for the number of ways
in which £k objects can be chosen from a set of n, under various combinations
of sampling rules:

” || Without replacement | With replacement ”

Order
— = k
significant Rlp= D colm=F41) "
Order n n+k—1
not significant k k

2. Formal Power Series

2.1. Definition

It is sometimes said that formal power series were the 19th-century analogue
of random-access memory.

Suppose that (agp,a;.az,...) is an infinite sequence of numbers. We can
wrap up the whole sequence into a single object, the formal power series
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A(z) in an indeterminate = given by

A(z) =) ana” =ao+ arw + agz® + -+ .

n=>0

We have not lost any information, since the numbers a,, can be recovered
from the power series:
1 d”
— — Az .
n! dan () =0
Of course, we will have to think carefully about what is going on here,
especially if the power series doesn’t converge, so that we cannot apply the

an =

techniques of analysis.

In fact, it is very important that our treatment should not depend on
using analytic techniques. We define formal power series and operations on
them abstractly, but at the end it is legitimate to think that formulae like
the above are valid, and questions of convergence do not enter. So operations
on formal power series are not allowed to involve infinite sums, for example;
but finite sums are legitimate. The “coefficients” will usually be taken from
some number system, but may indeed come from any commutative ring
with identity.

Here is a brief survey of how it is done.

A formal power series is defined as simply a sequence (ay,),>0; but keep
in mind the representation of it as a formal sum > a,z". Now:

e Addition and scalar multiplication are defined term-by-term:

(Z a.,l:c"’) 4 (Z bnac") = Z(a,,, + b))z,
¢ (Z a"c”) = Z(can);r;".

e Multiplication of series is by the convolution rule (mysterious in the
abstract, but clear in the series representation)

(Z (L.n,fljn) (Z bnl‘n) _ Z cna™,
Cp = Z ak:bnfk-
k=0

e Differentiation of series (which will be denoted by D rather than d/dzx)
is term-by-term, using the rule that D(2") = na"':

D E anpx | = E napa™ ! = E (n+ Day 2™,

n>0 n>1 n>0

where

Note that, in the rule for product, the expression for ¢, is a finite sum.
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With the above addition and multiplication, the set R[[z]] of all formal
power series over a commutative ring R with identity is a commutative ring
with identity. The third operation makes it a differential ring. This just says
that differentiation is R-linear and that Leibniz’ law

D(AB) = A(DB) + (DA)B,

holds.

Other operations on formal power series are possible. For example, we
can form infinite sums and products, provided these only involve finite sums
and products of coefficients. For example, if (aﬁf )) are sequences with the
property that, for any n, there exists m such that agf' ) =0 forall i > m,
then we can form ) .., A;, where A; = 3 ., a\)a™. For the coefficient
of 2" in this infinite sum is the finite sum

m
> op
=0

We can substitute a formal power series B(z) for x in another formal
power series A(x) provided that the constant term of B is zero. For the series
B(z)" has the coefficients of 1, 2,22, ...,2'"! all zero; so by the preceding
paragraph,

A(B(z)) = Y a:B(z)'
i>0
is well-defined.

You are invited to formulate a sufficient condition for the infinite prod-
uct [] Ai(z) to be defined.

A formal power series A(z) in R[[z]] is invertible if and only if its con-
stant term ag is invertible in R. To see this, consider the equation

(Zn®) (Tbe) =1.

The constant term shows that agby = 1, so it is necessary that ag is invert-
ible. But if ag is invertible, then the equation for the coefficient of z™ is

n
Z akbn—k = 07
k=0

so that

n
—1
bn = —aqg ( E alcbn—lc)':
k=1

50 b, can be found recursively as a linear combination of by, ..., b,_;.
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An important special case is: a formal power series with constant term
1 is invertible (and its inverse also has constant term 1).

2.2. Classical examples

If the coefficients of a formal power series are numbers (as they will almost
always be), then the series may or may not converge for a particular value
of z. Recall from complex analysis that, for any power series with complex
coefficients, there is a number R € [0, 00| (a non-negative real number or
infinity) with the properties

e If |z| < R, then ) a,z™ converges;
e If |z| > R, then ) a,a™ diverges.

We say that R is the radius of convergence; the behaviour of the series for
|z| = R is not specified. The interpretation of the extreme values is that, if
R = oc, then the series converges for all o, while if x = 0, then the series
diverges for all 2 # 0.

If a series has non-zero radius of convergence, then it defines a complex
analytic function inside its circle of convergence. This gives us several more
techniques that can be used. For example,

e We can use Cauchy’s integral formulae to evaluate the derivatives at the
origin (the coeflicients of the series);

e If some identity between power series is known for analytic reasons, then
it holds in the ring of formal power series.

There are three very important series:

e The exponential series

pen 2

exp(z) = Z il—'

n>0

(We usually write exp(z) rather than e®.)
The logarithmic series

log(l+z) = Z

n>1

(_1)71a11.n
- .

The binomial series, for any complex number a:

(14+z)*= Z (Z)x",

n>0
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a . ) .
where ( ) is the binomial coefficient
n

ay ala—=1)...(a—n+1)
n n!

Note that the binomial series has only finitely many terms if a is a non-
negative integer, since in that case if n > a then the numerator of the

. . v @ . .
binomial coefficient ( ) contains a factor a — a = 0. However, in all other
n

cases, it is an infinite series.
Now various familiar properties hold, for example:

e exp(log(l +x)) =1+ z, log(1 + (exp(xz) — 1)) = = (the series exp(z) — 1
has constant term zero and so can be substituted into the logarithmic
series);

e More generally, exp(alog(l + z)) = (1 4+ )%,

e The laws of exponents hold, for example (1 + x)*(1 + x)* = (1 + x)%*?,
or ((1 4+ )% = (1 + ). (For the second, we have to write (1 + x)* =
1+ A(z) for some power series A(zx).)

As said above, all these facts have analytic proofs, and therefore hold for the

power series. However, we have the possibility of either finding proofs of the

identities by combinatorial manipulations, or alternatively, of unpacking

the combinatorial content of the equations to prove combinatorial identities.
Here is a simple example. Consider the identity

1+ z)*(1 +z)° = (1 4 z)**,

Calculating the coefficient of ™ on both sides, and using the formula for
multiplication of formal power series, we obtain our first example of a bino-
mial coefficient identity:

Theorem 1 (Vandermonde convolution).

260

An even simpler example is the one discussed in the introduction:
(1-22)" 1= 2(2:17)",
n=>0

an example of a geometric series.
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2.3. Generalisations

The simple notion of formal power series described here can be extended
in several ways. Here are a few:

e We will often represent a sequence (a,) by its exponential generating
function

o
n! -

n>0

We will see that this arises naturally in counting “labelled” objects.
A Laurent series can admit a finite number of negative powers of z:

A(z) = ) ana™,

n=>no

where ng may be negative. Of course, we could allow arbitrary negative
as well as positive powers of z; but then the sum in the convolution rule
for the product of two series would be infinite, so this doesn’t work.

We can consider formal power series in more than one variable, expres-
sions of the form

A(.’I.', y) - Z U’m,nmmynv

m,n>0

We see that a formal power series in two variables is the generating func-
tion for a two-dimensional array of numbers. Nothing new is required,
since A(xz,y) belongs to the ring of formal power series in the indetermi-
nate y over the ring R[[z]].

We can even allow infinitely many indeterminates (as long as each term
only involves finitely many of them).

There are other completely different kinds of series. Number theorists like
the Dirichlet series which represents a sequence (ay)n>1 by the series

Uy
P

n>1

There is a framework which includes both kinds of series, but that is
beyond the scope of this chapter.
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3. Subsets, Partitions, Permutations

We have met very little combinatorics yet. The most important combina-
torial objects are subsets, partitions, and permutations, and these provide
many counting problems, to which we now turn.

3.1. Subsets
The Binomial Theorem for non-negative integers n states:

Theorem 2 (Binomial Theorem).

(1+z)" = zn: (Z):c"

r-3 (1)

The left-hand side of this equation is the number of subsets of the set

{1,2,...,n}. On the right-hand side, we use a familiar interpretation

n :
of the binomial coefficients: ( k) is the number of k-element subsets of
{1,2,...,n}. Since every subset has a unique cardinality in the range
0,...,n, we see why the equation is true. Indeed, once we have verified

the counting interpretation of the binomial coefficients, we have given a
bijective proof of the Binomial Theorem for non-negative integer expo-
nents. (The term “bijective proof” refers to an argument which shows that
two expressions are equal by finding a bijection or matching between sets
counted by the two expressions.)

There is a huge industry of finding and verifying binomial coefficient
identities. In the preceding section, we met the Vandermonde convolution
(written here with different variables)

(0= (3"

Here is a bijective proof. Take a class of n + m children, of whom n are

girls and m are boys. We wish to pick a team made up of k of the children

. . . . [n+m
in the class. This can obviously be done in —Z ways. Alternatively,

we could choose a number [ between 0 and k, and select [ of the n girls,



