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Preface to the Second Edition

My original intent in writing Applied Probability was to strike a balance
between theory and applications. Theory divorced from applications runs
the risk of alienating many potential practitioners of the art of stochastic
modeling. Applications without a clear statement of relevant theory drift
in a sea of confusion. To a lesser degree I was also motivated by a desire to
promote the nascent field of computational probability. Current students of
the mathematical sciences are more computer savvy than ever. Putting the
right computational tools in their hands is bound to advance probability
and the broader good of science.

The second edition of Applied Probability remains true to these aims. I
have added two new chapters on asymptotic and numerical methods and
an appendix that separates some of the more delicate mathematical theory
from the steady flow of examples in the main text. In addition to these
major changes, there is now a much more extensive list of exercises. Some
of these are trivial, but others will challenge even the best students. Finally,
many errors, both large and small, have been corrected.

Chapter 4 on combinatorics includes new sections on bijections, Catalan
numbers, and Faa di Bruno’s formula. The proof of the inclusion-exclusion
formula has been clarified. Chapter 7 on Markov chains contains new mate-
rial on rates of convergence to equilibrium in reversible finite-state chains.
This discussion draws on students’ previous exposure to eigenvalues and
eigenvectors in linear algebra. Chapter 9 on branching processes features
a new section on basic reproduction numbers. Here the idea is to devise
easy algebraic tests for deciding when a process is subcritical, critical, or
supercritical. Chapter 11 on diffusion processes gives better coverage of
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Brownian motion. The last two sections of the chapter have been moved to
the new Chapter 13 on numerical methods. The orphan material on con-
vergent sequences of random variables in Chapter 1 has been moved to the
new Chapter 12 on asymptotic methods.

Once again I would like to thank the students of my UCLA biomathe-
matics classes for their help. Particularly noteworthy are David Alexander,
Kristin Ayers, Forrest Crawford, Kate Crespi, Gabriela Cybis, Lewis Lee,
Sarah Nowak, John Ranola, Mary Sehl, Tongtong Wu, and Jin Zhou. I owe
an especially heavy debt to Hua Zhou, my former postdoctoral fellow, for
suggesting many problems and lecturing in my absence. I also thank my
editor, John Kimmel, for his kind support. Finally, I am glad to report that
my mother, to whom both editions of this book are dedicated, is alive and
well. If I can spread even a fraction of the cheer she has spread, then I will
be able to look back over a life well lived.
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Despite the fears of university mathematics departments, mathematics ed-
ucation is growing rather than declining. But the truth of the matter is
that the increases are occurring outside departments of mathematics. En-
gineers, computer scientists, physicists, chemists, economists, statisticians,
biologists, and even philosophers teach and learn a great deal of mathemat-
ics. The teaching is not always terribly rigorous, but it tends to be better
motivated and better adapted to the needs of students. In my own experi-
ence teaching students of biostatistics and mathematical biology, I attempt
to convey both the beauty and utility of probability. This is a tall order,
partially because probability theory has its own vocabulary and habits of
thought. The axiomatic presentation of advanced probability typically pro-
ceeds via measure theory. This approach has the advantage of rigor, but
it inevitably misses most of the interesting applications, and many applied
scientists rebel against the onslaught of technicalities. In the current book, I
endeavor to achieve a balance between theory and applications in a rather
short compass. While the combination of brevity and balance sacrifices
many of the proofs of a rigorous course, it is still consistent with supplying
students with many of the relevant theoretical tools. In my opinion, it is
better to present the mathematical facts without proof rather than omit
them altogether.

In the preface to his lovely recent textbook [209], David Williams writes,
“Probability and Statistics used to be married; then they separated; then
they got divorced; now they hardly see each other.” Although this split
is doubtless irreversible, at least we ought to be concerned with properly
bringing up their children, applied probability and computational statistics.



viii  Preface

If we fail, then science as a whole will suffer. You see before you my attempt
to give applied probability the attention it deserves. My other recent book
[122] covers computational statistics and aspects of computational proba-
bility glossed over here.

This graduate-level textbook presupposes knowledge of multivariate cal-
culus, linear algebra, and ordinary differential equations. In probability
theory, students should be comfortable with elementary combinatorics, gen-
erating functions, probability densities and distributions, expectations, and
conditioning arguments. My intended audience includes graduate students
in applied mathematics, biostatistics, computational biology, computer sci-
ence, physics, and statistics. Because of the diversity of needs, instructors
are encouraged to exercise their own judgment in deciding what chapters
and topics to cover.

Chapter 1 reviews elementary probability while striving to give a brief
survey of relevant results from measure theory. Poorly prepared students
should supplement this material with outside reading. Well-prepared stu-
dents can skim Chapter 1 until they reach the less well-known material
of the final two sections. Section 1.8 develops properties of the multivari-
ate normal distribution of special interest to students in biostatistics and
statistics. This material is applied to optimization theory in Section 3.3
and to diffusion processes in Chapter 11.

We get down to serious business in Chapter 2, which is an extended essay
on calculating expectations. Students often complain that probability is
nothing more than a bag of tricks. For better or worse, they are confronted
here with some of those tricks. Readers may want to skip the final two
sections of the chapter on surface area distributions on a first pass through
the book.

Chapter 3 touches on advanced topics from convexity, inequalities, and
optimization. Besides the obvious applications to computational statistics,
part of the motivation for this material is its applicability in calculating
bounds on probabilities and moments.

Combinatorics has the odd reputation of being difficult in spite of rely-
ing on elementary methods. Chapters 4 and 5 are my stab at making the
subject accessible and interesting. There is no doubt in my mind of combi-
natorics’ practical importance. More and more we live in a world dominated
by discrete bits of information. The stress on algorithms in Chapter 5 is
intended to appeal to computer scientists.

Chapters 6 through 11 cover core material on stochastic processes that
I have taught to students in mathematical biology over a span of many
years. If supplemented with appropriate sections from Chapters 1 and 2,
there is sufficient material here for a traditional semester-long course in
stochastic processes. Although my examples are weighted toward biology,
particularly genetics, I have tried to achieve variety. The fortunes of this
book doubtless will hinge on how compelling readers find these examples.
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You can leaf through the table of contents to get a better idea of the topics
covered in these chapters.

In the final two chapters, on Poisson approximation and number theory,
the applications of probability to other branches of mathematics come to
the fore. These chapters are hardly in the mainstream of stochastic pro-
cesses and are meant for independent reading as much as for classroom
presentation.

All chapters come with exercises. (In this second printing, some addi-
tional exercises are included at the end of the book.) These are not graded
by difficulty, but hints are provided for some of the more difficult ones. My
own practice is to require one problem for each hour and a half of lecture.
Students are allowed to choose among the problems within each chapter
and are graded on the best of the solutions they present. This strategy
provides an incentive for the students to attempt more than the minimum
number of problems.

I would like to thank my former and current UCLA and University of
Michigan students for their help in debugging this text. In retrospect, there
were far more contributing students than I can possibly credit. At the
risk of offending the many, let me single out Brian Dolan, Ruzong Fan,
David Hunter, Wei-hsun Liao, Ben Redelings, Eric Schadt, Marc Suchard,
Janet Sinsheimer, and Andy Ming-Ham Yip. I also thank John Kimmel of
Springer—Verlag for his editorial assistance.

Finally, I dedicate this book to my mother, Alma Lange, on the occasion
of her 80th birthday. Thanks, Mom, for your cheerfulness and generosity
in raising me. You were, and always will be, an inspiration to the whole
family.
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1
Basic Notions of Probability Theory

1.1 Introduction

This initial chapter covers background material that every serious student
of applied probability should master. In no sense is the chapter meant
as a substitute for a previous course in applied probability or for a future
course in measure-theoretic probability. Our comments are merely meant as
reminders and as a bridge. Many mathematical facts will be stated without
proof. This is unsatisfactory, but it is even more unsatisfactory to deny
students the most powerful tools in the probabilist’s toolkit. Quite apart
from specific tools, the language and intellectual perspective of modern
probability theory also furnish an intuitive setting for solving practical
problems. Probability involves modes of thought that are unique within
mathematics. As a brief illustration of the material reviewed, we derive
properties of the multivariate normal distribution in the final section of this
chapter. Later chapters will build on the facts and vocabulary mentioned
here and provide more elaborate applications.

1.2 Probability and Expectation

The layman’s definition of probability is the long-run frequency of success
over a sequence of independent, identically constructed trials. Although this
law of large numbers perspective is important, mathematicians have found
it helpful to put probability theory on an axiomatic basis [24, 53, 60, 80,

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_1. © Springer Science+Business Media. LLC 2010



2 1. Basic Notions of Probability Theory

166, 171, 208]. The modern theory begins with the notion of a sample space
Q and a collection F of subsets from (2 subject to the following conventions:

(1.28) TIRFEF.
(1.2b) If A € F, then its complement A° € F.

(1.2c) If Ay, Az, ... is a finite or countably infinite sequence of subsets
from F, then | J; Ai € F.

Any collection F satisfying these postulates is termed a o-field or o-algebra.
Two immediate consequences of the definitions are that the empty set ) € F
and that if Ay, As,... is a finite or countably infinite sequence of subsets
from F, then N, Ai = (U, A5)® € F. In probability theory, we usually
substitute everyday language for set theory language. Table 1.1 provides a
short dictionary for translating equivalent terms.

TABLE 1.1. A Brief Dictionary of Set Theory and Probability Terms

Set Theory | Probability || Set Theory Probability

set event null set impossible event
union or universal set certain event
intersection | and pairwise disjoint | mutually exclusive
complement | not inclusion implication

The axiomatic setting of probability theory is completed by introducing
a probability measure or distribution Pr on the events in F. This function
should satisfy the properties:

{1.2d) = Pr{f¥)=1.
(1.2e) Pr(A) >0 for any A € F.

(1.2f) Pr(,; Ai) = 3, Pr(A;) for any countably infinite sequence of
mutually exclusive events Ay, As,... from F.

A triple (2, F, Pr) constitutes a probability space. An event A € F is said
to be null when Pr(A) = 0 and almost sure when Pr(A) = 1.

Example 1.2.1 Discrete Uniform Distribution

One particularly simple sample space is the set @ = {1,...,n}. Here the
natural choice of F is the collection of all subsets of 2. The uniform distribu-
tion (or normalized counting measure) attributes probability Pr(A) = %l
to a set A, where |A| denotes the number of elements of A. Most of the
counting arguments of combinatorics presuppose the discrete uniform dis-
tribution. ]



1.2 Probability and Expectation 3

Example 1.2.2 Continuous Uniform Distribution

A continuous analog of the discrete uniform distribution is furnished by
Lebesgue measure on the unit interval [0,1]. In this case, the best one
can do is define F as the smallest o-algebra containing all closed subin-
tervals [a,b] of 2 = [0, 1]. The events in F are then said to be Borel sets.
Henri Lebesgue was able to show how to extend the primitive identifica-
tion Pr([a,b]) = b — a of the probability of an interval with its length to
all Borel sets [171]. Invoking the axiom of choice from set theory, one can
prove that it is impossible to attach a probability consistently to all sub-
sets of [0, 1]. The existence of nonmeasurable sets makes the whole enter-
prise of measure-theoretic probability more delicate than mathematicians
anticipated. Fortunately, one can ignore such subtleties in most practical
problems. i

The next example is designed to give readers a hint of the complexities
involved in defining probability spaces.
Example 1.2.3 Density in Number Theory

Consider the natural numbers Q = {1,2,...} equipped with the density
function
ALTELD . s
o 1AN{L2,
n—oo0 n

den(A) =

Clearly, 0 < den(A) < 1 whenever den(A) is defined. Some typical densities
include den(2) = 1, den({;j}) = 0, and den({7, 27, 3j,4j,...}) = 1/j. Any
o-algebra F containing each of the positive integers {j} fails the test of
countable additivity stated in postulate (1.2f) above. Indeed,

den() # 0 = ) den({j}).

i=1

Note that den(A) does satisfy the test of finite additivity. Of course, it is
possible to define many legitimate probability distributions on the positive
integers. "

In practice, most questions in probability theory revolve around random
variables rather than sample spaces. Readers will doubtless recall that a
random variable X is a function from a sample space €2 into the real line R.
This is almost correct. To construct a consistent theory of integration, one
must insist that a random variable be measurable. This technical condition
requires that for every constant ¢, the set {w € Q : X(w) < ¢} be an event in
the o-algebra F attached to Q. Measurability can also be defined in terms
of the Borel sets B of R, which comprise the smallest o-algebra containing
all intervals [a, b] of R. With this definition in mind, X is measurable if and
only if the inverse image X ~!(B) of every Borel set B is an event in F. This



