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Introduction

In this work, we will deal with standard determinantal ideals, determinantal ideals,
and symmetric determinantal ideals, i.e., ideals generated by the maximal minors
of a homogeneous polynomial matrix, by the minors (not necessarily maximal) of a
homogeneous polynomial matrix, and by the minors of a homogeneous symmetric
polynomial matrix, respectively. Some classical ideals that can be constructed in
this way are the homogeneous ideal of Segre varieties, the homogeneous ideal of
rational normal scrolls, and the homogeneous ideal of Veronese varieties.
Standard determinantal ideals, determinantal ideals, and symmetric determi-
nantal ideals have been a central topic in both commutative algebra and algebraic
geometry and they also have numerous connections with invariant theory, repre-
sentation theory and combinatorics. Due to their imiportant role, their study has
attracted many researchers and has received considerable attention in the litera-
ture. Some of the most remarkable results are due to J.A. Eagon and M. Hochster
[20] and to J.A. Eagon and D.G. Northcott [21]. J.A. Eagon and M. Hochster
proved that generic determinantal ideals are Cohen—Macaulay while the Cohen—
Macaulayness of symmetric determinantal ideals was proved by R. Kutz in [62,
Theorem 1]. J.A. Eagon and D.G. Northcott constructed a finite free resolution
for any standard determinantal ideal and as a corollary they got that standard
determinantal ideals are Cohen-Macaulay. In [85], B. Sturmfels uses the Knuth—
Robinson-Schensted (KRS) correspondence for the computation of Grébner bases
of determinantal ideals. The application of the KRS correspondence to determi-
nantal ideals has also been investigated by S.S. Abhyankar and D.V. Kulkarni
in [1] and [2]. Furthermore, variants of the KRS correspondence can be used to
study symmetric determinantal ideals (see [17]) or ideals generated by Pfaffians of
skew symmetric matrices (see [47], [5], and [18]). Many other authors have made
important contributions to the study of standard determinantal ideals, determi-
nantal ideals, and symmetric determinantal ideals without even being mentioned
here and we apologize to those whose work we may have failed to cite properly.

In this book, we will mainly restrict our attention to standard determinantal
ideals and we will attempt to address the following three crucial problems.

(1) CI-liaison class and G-liaison class of standard determinantal ideals, deter-
minantal ideals, and symmetric determinantal ideals.
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(2) The multiplicity conjecture for standard determinantal ideals, determinantal
ideals, and symmetric determinantal ideals.

(3) Unobstructedness and dimension of families of standard determinantal
schemes, determinantal schemes, and symmetric determinantal schemes.

Given the extensiveness of the subject, it is not possible to go into great
detail in every proof. Still, it is hoped that the material that we choose will be
beneficial and illuminating for the reader. The reader can refer [10], [54], [56], [59],
[60], [70], [9], and [22] for background, history, and a list of important papers.

Let us now briefly describe the contents of each single chapter of this book.
We start out in Chapter 1 by fixing notation and providing the basic concepts in the
field. Minimal free resolutions, arithmetically Cohen-Macaulay (ACM) schemes,
and arithmetically Gorenstein (AG) schemes are the topics of Section 1.1. In Sec-
tion 1.2, we recall the definition and basic facts on standard determinantal ideals,
determinantal ideals and symmetric determinantal ideals, we also provide the re-
sults on good and standard determinantal schemes X C P™ and the associated
complexes, used later on. In particular, we recall the definition of generalized
Koszul complexes which provide minimal free R-resolutions of the homogeneous
ideal I(X) of X and of the canonical module Kx of X. Section 1.3 is devoted
to the definition of Cl-liaison and G-liaison and to overview the known results
on liaison theory needed later on. In particular, we present G-liaison theory as a
theory of divisors on arithmetically Cohen—Macaulay schemes which collapses to
the setting of Cl-liaison theory as a theory of generalized divisors on a complete
intersection scheme. In order for meaningful applications of G-liaison to be found,
we need useful constructions of Gorenstein ideals. We end this chapter describing
the method that has been used either directly or at least indirectly in most of
the results about G-liaison discovered in the last years (see Theorems 1.3.11 and
1.3.12).

Chapter 2 is devoted to study the Cl-liaison class and G-liaison class of stan-
dard determinantal ideals. Liaison theory has its roots dating more than a century
ago although the greatest activity has been in the last 30 years, beginning with
the work of C. Peskine and L. Szpiro [75], where they established liaison theory
as a modern discipline and they gave a rigorous proof of Gaeta’s theorem. The
goal of Section 2.1 is to sketch a proof of Gaeta’s theorem: every arithmetically
Cohen—Macaulay codimension 2 subscheme X of P" can be Cl-linked in a finite
number of steps to a complete intersection subscheme; i.e., X is licci. Since it is well
known for subschemes of codimension 2 of P that arithmetically Cohen—Macaulay
subschemes are standard determinantal (Hilbert-Burch theorem) and that arith-
metically Gorenstein subschemes are complete intersections, Gaeta’s theorem can
be viewed as a first result about the Cl-liaison and G-liaison of standard deter-
minantal schemes. In Section 2.2, we prove that in the Cl-liaison context Gaeta’s
theorem does not generalize well to subschemes X C P" of higher codimension.
More precisely, we introduce some graded modules which are Cl-liaison invari-
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ants and we use them to prove the existence of infinitely many different CI-liaison
classes containing standard determinantal curves C C P* (see Remark 2.2.14).
The purpose of Section 2.3 is to extend Gaeta’s theorem, viewed as a statement
on standard determinantal subschemes of codimension 2, to arbitrary codimension
and to prove that any standard determinantal subscheme X of P" can be G-linked
in a finite number of steps to a complete intersection subscheme; i.e., X is glicci.

In Chapter 3, we study the relation between the graded Betti numbers of
a homogeneous standard determinantal ideal I C R = Klz1,...,2,] and the
multiplicity of I, e(R/I). The motivation for comparing the multiplicity of a graded
R-module M to products of the shifts in a graded minimal free R-resolution of M
comes from a paper of C. Huneke and M. Miller [51]. They focused on homogeneous
Cohen-Macaulay ideals I C R of codimension ¢ with a pure resolution,

0 — ®R(—d.)% — -+ — R(—dy)* — R — R/I — 0,

and they proved for such ideals the following beautiful formula for the multiplicity
of R/I:

¢ . d;

e(R/I) = —szll .

c!
Since then there has been a considerable effort to bound the multiplicity of a
homogeneous Cohen—Macaulay ideal I C R in terms of the shifts in its graded
minimal free R-resolution; and J. Herzog, C. Huneke, and H. Srinivasan have made
the following conjecture (multiplicity conjecture) which relates the multiplicity

e(R/I) to the maximum and the minimum degree shifts in the graded minimal
free R-resolution of R/I.

Conjecture 0.0.1. Let I C R be a graded Cohen—Macaulay ideal of codimension c.
We consider the minimal graded free R-resolution of R/I:

0 — @jezR(—j)Prs B/ — .. — @z R(—j)P /1) — R — R/I — 0.

Set
m;(I) == min{j € Z | B; ;(R/I) # 0}

and
My(I) = max{j € Z | B,;(R/I) #0}.

Then, we have
¢ ; ¢ M,
s o oy < i M0
c! c!

There is a growing body of the literature proving special cases of Conjecture
0.0.1. For example, it holds for complete intersection ideals [46], powers of complete
intersection ideals [37], perfect ideals with a pure resolution (i.e., m; = M;) [51],
perfect ideals with a quasi-pure resolution (i.e., m; > M;_;) [46], perfect ideals
of codimension 2 [46], and Gorenstein ideals of codimension 3 [67]. We devote
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Chapter 3 to prove that Conjecture 0.0.1 works for standard determinantal ideals
of arbitrary codimension (see Theorem 3.2.6). We end Chapter 3, proving that the
ith total Betti number 3;(R/I) of a standard determinantal ideal I can be bounded
above by a function of the maximal shifts M;(I) in the minimal graded free R-
resolution of R/I as well as bounded below by a function of both the maximal
shifts M;(I) and the minimal shifts m;(I).

Hilbert schemes are not just sets of objects; they are endowed with a scheme
structure far of being well understood. In Chapter 4, we consider some aspects
related to families of standard determinantal schemes; more precisely, we address
the problem of determining the unobstructedness and the dimension of families of
standard (resp., good) determinantal schemes X C P"*¢ of codimension c. The
first important contribution to this problem is due to G. Ellinsgrud [25]; in 1975,
he proved that every arithmetically Cohen—Macaulay, codimension 2 closed sub-
scheme X of P"*2 is unobstructed (i.e., the corresponding point in the Hilbert
scheme Hilbp(t)(]P’"“) is smooth) provided n > 1, and he also computed the di-
mension of the Hilbert scheme Hilb?® (P"+2) at [X]. Recall also that the homoge-
neous ideal of an arithmetically Cohen—-Macaulay, codimension 2 closed subscheme
X of P"*2 is given by the maximal minors of a ¢ x (¢ + 1) homogeneous matrix,
the Hilbert—Burch matrix; i.e., X is standard determinantal. The purpose of this
chapter is to extend Ellingsrud’s theorem, viewed as a statement on standard de-
terminantal schemes of codimension 2, to arbitrary codimension. We also address
the problem whether the closure of the locus of standard determinantal schemes
in P"* is an irreducible component of Hilb?® (P"+¢), and when Hilb?{*) (P"+¢) is
generically smooth along the determinantal locus (see Corollaries 4.2.37, 4.2.41,
4.2.43, and 4.2.44).

Given integers by, ..., b and ag,ay,...,at4c—2, we denote by
W (b a) C Hilb?® (P+°)

the locus of good determinantal schemes X C P""¢ of codimension ¢ > 2 defined
by the maximal minors of a homogeneous matrix A = ( fﬂ);zzétt +e—2s Where
fji € K[z, 21, ..., Zntc| is a homogeneous polynomial of degree a; — b;. In Section
4.2, using induction on ¢ by successively deleting columns of the largest possible
degree and using repeatedly the Eagon—Northcott complexes and the Buchsbaum-—
Rim complexes associated with a standard determinantal scheme, we state an up-
per bound for the dimension of W (b; a) in terms of by, ..., b; and ag,as, ..., @Gite—2
(cf. Theorem 4.2.7 and Proposition 4.2.15). Using again induction on the codimen-
sion and the theory of Hilbert flag schemes, we analyze when the upper bound of
dim W (b; a), given in Theorem 4.2.7 and Proposition 4.2.15, is indeed the dimen-
sion of the determinantal locus. It turns out that the upper bound of dim W (b; a),
given in Theorem 4.2.7, is sharp in a number of instances. More precisely, for 2 <
¢ < 3, this is known (see [56], [25]), for 4 < ¢ < 5, it is a consequence of one of the
main theorems of this section (see Corollaries 4.2.26 and 4.2.30), while for ¢ > 6, we
get the expected dimension formula for W (b; a) under more restrictive numerical
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assumptions (see Corollary 4.2.31). Finally, we study when the closure of W (b; a) is
an irreducible component of Hilb?™ (P"+¢) and when Hilb?® (P"+) is generically
smooth along W (b;a). In Theorem 4.2.35, we show that the closure of W (b;a)
is a generically smooth irreducible component provided the zero-degree pieces of
certain Ext'-groups vanish. The conditions of Theorem 4.2.35 can be shown to be
satisfied in a wide number of cases which we make explicit. In particular, we show
that the mentioned Ext'-groups vanish if 3 < ¢ < 4 (Corollary 4.2.37). Similarly,
in Corollaries 4.2.41, 4.2.43, and 4.2.44 and as a consequence of Theorem 4.2.35,
we prove that under certain numerical assumptions the closure of W (b; a) is indeed
a generically smooth, irreducible component of Hilb” (t)(lP’”+C) of the expected di-
mension. In Examples 4.2.40 and 4.2.42, we show that this is not always the case,
although the examples created are somewhat special because all the entries of the
associated matrix are linear entries. We end Chapter 4 with two conjectures raised
by these results and proved in many cases (see Conjectures 4.2.47 and 4.2.48).

Throughout this book, we have mentioned various open problems. Some of
them and further problems related to determinantal ideals and symmetric deter-
minantal ideals are collected in the last chapter of the book. In fact, in Chapter 5
we address for determinantal ideals and symmetric determinantal ideals the prob-
lems addressed in the previous chapters for standard determinantal ideals; namely,
the G-liaison class, the multiplicity conjecture, and the unobstructedness of de-
terminantal ideals and symmetric determinantal ideals. We collect what is known,
some open problems that naturally arise in this general setup, and we add some
conjectures raised in the work.

More precisely, in Section 5.1, we determine the G-liaison class of symmetric
determinantal subschemes (see Proposition 5.1.11 and Theorem 5.1.12) and we
also sketch the proof of Gorla’s theorem: Any determinantal subscheme is glicci
(see Theorem 5.1.4). We devote Section 5.2 to prove the multiplicity conjecture
for symmetric determinantal ideals of codimension (m_2t+2) defined by the ¢ x t
minors of an m X m homogeneous symmetric matrix for any ¢t = 1,m — 1, and m,
and we left open the cases 2 < t < m — 2. In Section 5.2, we also show that the
ith total Betti number 3;(R/I) of a symmetric determinantal ideal, defined by the
submaximal minors of a homogeneous symmetric matrix, is bounded above by a
function of the maximal shifts M;(I) in the minimal graded free R-resolution of
R/I as well as bounded below by a function of both the maximal M;(I) and the
minimal shifts m;(I). In the last section of this work, we write down a lower bound
for dimx) Hilb” ® (P"), where X C PP" is a symmetric determinantal subscheme of
codimension 3 defined by the submaximal minors of an m x m homogeneous sym-
metric matrix (see Theorem 5.3.5), and we analyze when the mentioned bound is
sharp. This last result is a nice contribution to the classification problem of codi-
mension r Cohen-Macaulay quotients of the polynomial ring K{zg,z1,...,2,].
There is, in our opinion, little hope of solving the above classification problem
in full generality and for arbitrary codimension, and in this last section we have
restricted our attention to codimension 3 arithmetically Cohen—Macaulay sub-



xvi Introduction

schemes X C P™ with homogeneous ideal generated by the submaximal minors of
an m X m homogeneous symmetric matrix.

We have tried hard to keep the text as self-contained as possible. The basics of
algebraic geometry supplied by Hartshorne’s book [39] suffices as a foundation for
this text. Some familiarity with commutative algebra, as developed in Matsumura’s
book [64] and Bruns-Herzog’s book [9], is helpful and the rudiments on Ext and
Tor contained in every introduction to homological algebra will be used freely.

Acknowledgments. This book grew out of a series of lectures that the author
will deliver at a winter school at the Indian Institute of Technology, Mumbai,
January 2008 (see [70]). The author is grateful to the main organizers of this
School/Conference, Luchezar Avramov, Maria Evelina Rossi, Marc Chardin, Tony
Joseph Puthenpurakal, and Jugal Verma for giving her the opportunity to speak
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work: they are Jan O. Kleppe, Juan C. Migliore, Uwe Nagel, and Chris Peterson.
Last but not least, the author thanks Jan O. Kleppe as parts of Chapters 4 and 5
grew out of a long time cooperation.
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Chapter 1

Background

Throughout this book, P™ will be the n-dimensional projective space over an
algebraically closed field K of characteristic zero, R = K|[zg,z1,...,z,] and
m = (29, 21,...,2,) its homogeneous maximal ideal. If M is a graded R-module,
we distinguish two types of duals of M: the R-dual M* := Hompg (M, R) and the
K-dual MV := Homg (M, K). A scheme V C P™ will mean an equidimensional
locally Cohen—Macaulay closed subscheme of P". For a subscheme V of P" we de-
note by Ty its ideal sheaf, I(V) = H)(Zy) := @,c; H*(P", Iy (t)) its saturated
homogeneous ideal (unless V' = (), in which case we let I(V) =m), A(V) = R/I(V)
the homogeneous coordinate ring, and Ny = Hom(Zy, Oy ) the normal sheaf of V.

As we pointed out in the introduction, the main purpose of this first chapter
is to give some of the definitions and the necessary background for the material in
the subsequent chapters. The topics of Section 1.1 are, minimal free resolutions,
arithmetically Cohen-Macaulay schemes, and arithmetically Gorenstein schemes.
In Section 1.2, we provide the basic facts on determinantal ideals and symmetric
determinantal ideals as well as the associated complexes. Finally, in Section 1.3,
we overview the known results on liaison theory needed in the sequel.

1.1 Minimal free resolutions, ACM schemes,
and AG schemes

Minimal free resolutions

Let R = Klzg,...,z,] be the polynomial ring. By our standard conventions, a
homomorphism ¢ : M — N of graded R-modules is graded of degree zero, i.e.,
@([M];) C [N]; for all j € Z.



2 Chapter 1. Background

Definition 1.1.1. Let M be a graded R-module. Then N # 0 is said to be a k-syzygy
of M (as R-module) if there is an exact sequence of graded R-modules

0—N—FR2%F , —. .. . - K%M —0, (1.1)

where the modules F; are free R-modules. A module is called a k-syzygy if it is a
k-syzygy of some module.

Note that a (k + 1)-syzygy is also a k-syzygy. Moreover, every k-syzygy N is
a maximal R-module, i.e., dim N = dim R.

If M is a finitely generated graded R-module, let depth ; M denote the length
of a maximal M-sequence in a homogeneous ideal J C R and let depthM =
depth,, M. Let H%(—) be the ith right derived functor of the functor I';(—) of
sections with support in Spec(R/J) defined by

Ly(M):={me M |SuppRm C V(J)}.

We define the ith local cohomology functor H: (—) as the ith right derived functor
of the left exact functor HY(—) defined by

HY (M) := {m € M | m*¥.m = 0 for some k € N}.

The Krull dimension and the depth of a finitely generated graded R-module

M are cohomologically characterized by
dim M = max{i | Hj, (M) # 0}, (1.2)
depth M = min{i | H, (M) # 0}. (1.3)

Cutting the long exact sequence (1.1) into short exact sequences, we easily obtain
the following Lemma.

Lemma 1.1.2. If N is a k-syzygy of an R-module M, then
Hi(N)= H=*(M) for all i< dimR.

It follows that the depth of a k-syzygy is al least k.

Now we relate the local cohomology with the sheaf cohomology. Let F be a
sheaf of modules over X = Proj(A) where A is a graded K-algebra. Its cohomology
modules are denoted by

HY{X,F) = ®jezH (X, F(j)).

There are two functors relating graded A-modules M and sheaves of modules over
X: the sheafification functor which associates with each graded A-module M the
sheaf M. This functor is exact. In the opposite direction, there is the “twisted
global sections” functor which associates with each sheaf of modules F over X the



