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Preface

The control of internal structure during the fabrication of materials on the nano-
scale may enable us to develop a new generation of materials. A deeper under-
standing of phenomena on the microscopic scale may lead to completely new fields
of application. As a tool for microscopic analysis, molecular simulation methods—
such as the molecular dynamics and the Monte Carlo methods—have currently
been playing an extremely important role in numerous fields, ranging from pure
science and engineering to the medical, pharmaceutical, and agricultural sciences.
The importance of these methods is expected to increase significantly with the
advance of science and technology.

Many physics textbooks address the molecular simulation method for pure liquid
or solid systems. In contrast, textbooks concerning the simulation method for sus-
pensions or dispersions are less common; this fact provided the motivation for my
previous textbook. Moreover, students or nonexperts needing to apply the molecu-
lar simulation method to a physical problem have few tools for cultivating the skill
of developing a simulation program that do not require training under a supervisor
with expertise in simulation techniques. It became clear that students and nonexpert
researchers would find useful a textbook that taught the important concepts of the
simulation technique and honed programming skills by tackling practical physical
problems with guidance from sample simulation programs. This book would need
to be written carefully; it would not simply explain a sample simulation program,
but also explains the analysis procedures and include the essence of the theory, the
specification of the basic equations, the method of nondimensionalization, and
appropriate discussion of results. A brief explanation of the essence of the grammar
of programming languages also would be useful.

In order to apply the simulation methods to more complex systems, such as
carbon-nanotubes, polymeric liquids, and DNA/protein systems, the present book
addresses a range of practical methods, including molecular dynamics and Monte
Carlo, for simulations of practical systems such as the spherocylinder and the disk-
like particle suspension. Moreover, this book discusses the dissipative particle
dynamics method and the lattice Boltzmann method, both currently being devel-
oped as simulation techniques for taking into account the multibody hydrodynamic
interaction among dispersed particles in a particle suspension or among polymers
in a polymeric liquid.

The resulting characteristics of the present book are as follows. The important
and essential background relating to the theory of each simulation technique is
explained, avoiding complex mathematical manipulation as much as possible. The
equations that are included herein are all important expressions; an understanding
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of them is key to reading a specialized textbook that treats the more theoretical
aspects of the simulation methods. Much of the methodology, such as the assign-
ment of the initial position and velocity of particles, is explained in detail in order
to be useful to the reader developing a practical simulation program.

In the chapters dedicated to advancing the reader’s practical skill for developing
a simulation program, the following methodology is adopted. First, the sample
physical phenomenon is described in order to discuss the simulation method that
will be addressed in the chapter. This is followed by a series of analyses (including
the theoretical backgrounds) that are conducted mainly from the viewpoint of
developing a simulation program. Then, the assignment of the important parameters
and the assumptions that are required for conducting the simulation of the physical
problem are described. Finally, results that have been obtained from the simulation
are shown and discussed, with emphasis on the visualization of the results by snap-
shots. Each example is conducted with a sample copy of the simulation program
from which the results were obtained, together with sufficient explanatory descrip-
tions of the important features in the simulation program to aid to the reader’s
understanding.

Most of the sample simulation programs are written in the FORTRAN language,
excepting the simulation program for the Brownian dynamics method. We take
into account that some readers may be unfamiliar with programming languages,
that is, the FORTRAN or the C language; therefore, an appendix explains the
important features of these programming languages from the viewpoint of develop-
ing a scientific simulation program. These explanations are expected to signifi-
cantly reduce the reader’s effort of understanding the grammar of the programming
languages when referring to a textbook of the FORTRAN or the C language.

The present book has been written in a self-learning mode as much as possible,
and therefore readers are expected to derive the important expressions for
themselves—that is the essence of each simulation demonstration. This approach
should appeal to the reader who is more interested in the theoretical aspects of the
simulation methods.

Finally, the author strongly hopes that this book will interest many students in
molecular and microsimulation methods and direct them to the growing number of
research fields in which these simulation methods are indispensable, and that one
day they will be the preeminent researchers in those fields.

The author deeply acknowledges contribution of Dr. Geoff N. Coverdale, who
volunteered valuable assistance during the development of the manuscript. The
author also wishes to express his thanks to Ms. Aya Saitoh for her dedication and
patience during the preparation of so many digital files derived from the handwrit-
ten manuscripts.

Akira Satoh
Kisarazu City, Chiba Prefecture, Japan
December 2010
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1 Outline of Molecular Simulation
and Microsimulation Methods

In the modern nanotechnology age, microscopic analysis methods are indispensable
in order to generate new functional materials and investigate physical phenomena
on a molecular level. These methods treat the constituent species of a system, such
as molecules and fine particles. Macroscopic and microscopic quantities of interest
are derived from analyzing the behavior of these species.

These approaches, called “molecular simulation methods,” are represented by
the Monte Carlo (MC) and molecular dynamics (MD) methods [1—3]. MC methods
exhibit a powerful ability to analyze thermodynamic equilibrium, but are
unsuitable for investigating dynamic phenomena. MD methods are useful for ther-
modynamic equilibrium but are more advantageous for investigating the dynamic
properties of a system in a nonequilibrium situation. This book examines MD and
MC methods of a nonspherical particle dispersion in a three-dimensional system,
which may be directly applicable to such complicated dispersions as DNA and
polymeric liquids. This book also addresses Brownian dynamics (BD) methods
[1,4], which can simulate the Brownian motion of dispersed particles; dissipative
particle dynamics (DPD) [5—8]; and lattice Boltzmann methods [9—12], in which a
liquid system is regarded as composed of virtual fluid particles. Simulation meth-
ods using the concept of virtual fluid particles are generally used for pure liquid
systems, but are useful for simulating particle dispersions.

1.1 Molecular Dynamics Method

A spherical particle dispersion can be treated straightforwardly in simulations because
only the translational motion of particles is important, and the treatment of the rota-
tional motion is basically unnecessary. In contrast, since the translational and rota-
tional motion has to be simulated for an axisymmetric particle dispersion, MD
simulations become much more complicated in comparison with the spherical particle
system. Simulation techniques for a dispersion composed of nonspherical particles
with a general shape may be obtained by generalizing the methods employed to an
axisymmetric particle dispersion. It is, therefore, very important to understand the MD
method for the axisymmetric particle system.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00001-X
© 2011 Elsevier Inc. All rights reserved.



2 Introduction to Practice of Molecular Simulation

1.1.1 Spherical Particle Systems

The concept of the MD method is rather straightforward and logical. The motion of
molecules is generally governed by Newton’s equations of motion in classical the-
ory. In MD simulations, particle motion is simulated on a computer according to
the equations of motion. If one molecule moves solely on a classical mechanics
level, a computer is unnecessary because mathematical calculation with pencil and
paper is sufficient to solve the motion of the molecule. However, since molecules
in a real system are numerous and interact with each other, such mathematical anal-
ysis is impracticable. In this situation, therefore, computer simulations become a
powerful tool for a microscopic analysis.

If the mass of molecule i is denoted by m; and the force acting on molecule i by
the ambient molecules and an external field denoted by f;, then the motion of a par-
ticle is described by Newton’s equation of motion:

o
d"l‘,‘

iy =1, (1.1)

If a system is composed of N molecules, there are N sets of similar equations, and
the motion of N molecules interacts through forces acting among the molecules.
Differential equations such as Eq. (1.1) are unsuitable for solving the set of N
equations of motion on a computer. Computers readily solve simple equations, such
as algebraic ones, but are quite poor at intuitive solving procedures such as a trial-
and-error approach to find solutions. Hence, Eq. (1.1) will be transformed into an
algebraic equation. To do so, the second-order differential term in Eq. (1.1) must be
expressed as an algebraic expression, using the following Taylor series expansion:

2 3
dx(r) ¥ ih2d x(1) N lh3d x(1) 4

+h) =x(r) + h
R =m0t st o Y e

(1.2)

Equation (1.2) implies that x at time (z + &) can be expressed as the sum of x
itself, the first-order differential, the second-order differential, and so on, multiplied
by a constant for each term. If x does not significantly change with time, the higher-
order differential terms can be neglected for a sufficiently small value of the time
interval h. In order to approximate the second-order differential term in Eq. (1.1) as
an algebraic expression, another form of the Taylor series expansion is necessary:

de(r) 1 ,dx(r) 1 5dx()
r—=h)=x(t)—h + =—h" =
M =By =x)=h=g=+ 37 ~ 3"

+ - (1.3)

If the first-order differential term is eliminated from Egs. (1.2) and (1.3), the
second-order differential term can be solved as

d*x(1) _ x(t+h) = 2x(e) + x(¢ — h)

dr 2 +O(h7) (1.4)
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The last term on the right-hand side of this equation implies the accuracy of the
approximation, and, in this case, terms higher than h? are neglected. If the second-
order differential is approximated as

d’x(1) _x(t+h)—2x(t) + x(t — h)
a2 2

(1.5)

This expression is called the “central difference approximation.” With this approxi-
mation and the notation r; = (x;, y;, z;) for the molecular position and f; = (fy, fi:,
f-i) for the force acting on particle i, the equation of the x-component of Newton’s
equation of motion can be written as

xi(t +h)=2x;(¢t) —xi(t —h) + %f_\.,-(t) (1.6)

Similar equations are satisfied for the other components. Since Eq. (1.6) is a
simple algebraic equation, the molecular position at the next time step can be
evaluated using the present and previous positions and the present force. If a
system is composed of N molecules, there are 3N algebraic equations for speci-
fying the motion of molecules; these numerous equations are solved on a com-
puter, where the motion of the molecules in a system can be pursued with the
time variable. Eq. (1.6) does not require the velocity terms for determining the
molecular position at the next time step. This scheme is called the “Verlet
method™ [13]. The velocity, if required, can be evaluated from the central differ-
ence approximation as

wile) = l','(l o h)z_h l','(f = h) (17)

This approximation can be derived by eliminating the second-order differential
terms in Egs. (1.2) and (1.3). It has already been noted that the velocities are unnec-
essary for evaluating the position at the next time step; however, a scheme using the
positions and velocities simultaneously may be more desirable in order to keep the
system temperature constant. We show such a method in the following paragraphs.

If we take into account that the first- and second-order differentials of the posi-
tion are equal to the velocity and acceleration, respectively, the neglect of differen-
tial terms equal to or higher than third-order in Eq. (1.2) leads to the following
equation:

l?_
ri(t + h) =ri(t) + hvi(t) + o fi(r) (1.8)
2[11,'

This equation determines the position of the molecules, but the velocity term
arises on the right-hand side, so that another equation is necessary for specifying
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the velocity. The first-order differential of the velocity is equal to the
acceleration:

vile + h) = vi(t) + 2-£(0) (1.9)
m;

In order to improve accuracy, the force term in Eq. (1.9) is slightly modified
and the following equation obtained:

Vilt + B) = Vi) + == (€0) + £t + b)) (1.10)
2mi

The scheme of using Egs. (1.8) and (1.10) for determining the motion of molecules
is called the “velocity Verlet method” [14]. It is well known that the velocity Verlet
method is significantly superior in regard to the stability and accuracy of a simulation.

Consider another representative scheme. Noting that the first-order differential
of the position is the velocity and that of the velocity is the acceleration, the appli-
cation of the central difference approximation to these first-order differentials leads
to the following equations:

rit + h) = r,(t) + hvi(t + h/2) (1.11)
wu+hﬂ):wu~hny+£Jm) (1.12)

The scheme of pursuing the positions and velocities of the molecules with
Egs. (1.11) and (1.12) is called the “leapfrog method” [15]. This name arises from
the evaluation of the positions and forces, and then the velocities, by using time
steps in a leapfrog manner. This method is also a significantly superior scheme in
regard to stability and accuracy, comparable to the velocity Verlet method.

The MD method is applicable to both equilibrium and nonequilibrium physical
phenomena, which makes it a powerful computational tool that can be used to simu-
late many physical phenomena (if computing power is sufficient).

We show the main procedure for conducting the MD simulation using the veloc-
ity Verlet method in the following steps:

. Specify the initial position and velocity of all molecules.

. Calculate the forces acting on molecules.

. Evaluate the positions of all molecules at the next time step from Eq. (1.8).
Evaluate the velocities of all molecules at the next time step from Eq. (1.10).
Repeat the procedures from step 2.

RIS

In the above procedure, the positions and velocities will be evaluated at every
time interval 4 in the MD simulation. The method of specifying the initial positions
and velocities will be shown in Chapter 2.

Finally, we show the method of evaluating the system averages, which are
necessary to make a comparison with experimental or theoretical values. Since
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microscopic quantities such as positions and velocities are evaluated at every time
interval in MD simulations, a quantity evaluated from such microscopic values—
for example, the pressure—will differ from that measured experimentally. In order
to compare with experimental data, instant pressure is sampled at each time step,
and these values are averaged during a short sampling time to yield a macroscopic
pressure. This average can be expressed as

N
A=) A,/N (1.13)
n=1

in which A, is the nth sampled value of an arbitrary physical quantity A, and A,
called the “time average,” is the mathematical average of N sampling data.

1.1.2 Nonspherical Particle Systems
1.1.2.1 Case of Taking into Account the Inertia Terms

For the case of nonspherical particles, we need to consider the translational motion
of the center of mass of a particle and also the rotational motion about an axis
through the center of mass. Axisymmetric particles are very useful as a particle
model for simulations, so we will focus on the axisymmetric particle model in this
section. As shown in Figure 1.1, the important rotational motion is to be treated
about the short axis line. If the particle mass is denoted by m, the inertia moment
by /, the position and velocity vectors of the center of mass of particle i by r; and
v;, respectively, the angular velocity vector about the short axis by wj;, and the force
and torque acting on the particle by f; and T, respectively, then the equations of
motion concerning the translational and rotational motion can be written as

W,

Ap,
(A) (B) .

Figure 1.1 Linear particle and angular velocity: (A) the axisymmetric particle and (B) the
coordinate system.
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d-r,
- 1.14
m d[z ( )
o (1.15)
ar

Since the translational velocity v; is related to the position vector r; as v; = dr;/dt,
we now consider the meaning of a quantity ¢;, which is related to the angular
velocity w; as w; = dd/dr. It is assumed that during a short time interval At, &;
changes into (¢; + Ad,) where Ad; is expressed as Ad; = (AP, Adiy, Adi). As
shown in Figure 1.1B, w. is related to the rotational angle in the xy-plane about the
z-axis, A¢.. The other components have the same meanings, so that ¢; and w; for
particle i can be related in the following expression:

Ad; = bt + Ar) — d,(1) = Arwi(r) (1.16)

Is the use of the quantity ¢;, corresponding to r;, general? It seems to be more
direct and more intuitive to use the unit vector e; denoting the particle direction
rather than the quantity ¢,. The change in e; during an infinitesimal time interval,
Ae;, can be written using the angular velocity w; as

Ae;(r) = e;(r + Ar) — e;(1) = Arw;(r) X e;(1) (1.17)
From Eqgs. (1.16) and (1.17), e; can be related to ¢, as
Aei(r) = Ad(1) X e(1) (1.18)

Equation (1.17) leads to the governing equation specifying the change of the parti-
cle direction:

dei(r)

2 = w;(1) X e;(r) (1.19)

Hence, Eq. (1.15) for the angular velocity and Eq. (1.19) for the particle direction
govern the rotational motion of an axisymmetric particle.

In order to solve Eqgs. (1.15) and (1.19) for the rotational motion on a computer,
these equations have to be translated into finite difference equations. To do so, as
already explained, the first- and second-order differentials have to be expressed as
algebraic expressions using the finite difference approximations based on Taylor
series expansions. General finite difference expressions are as follows:

dx(r) _ x(t + Ar)—x(1) dx(r) _ x(t) — x(t — Ar)
dr At +Olag, dr At i)

dx(r) _ x(t+ Ar)—x(t — Ar)
dr 2At

(1.20)
+O((Ar)?)




Outline of Molecular Simulation and Microsimulation Methods 7

d’x(1) _ X+ An) = 2x(2) + x(1 — Ar)

+ O((Ar)? 1.21
= o (An?) (1.21)

The simplest algorithm can be obtained using the forward finite difference
approximation in Eq. (1.20) as

ei(t + At) =e;(r) + Atw,»(t) X ei(1)

wi(t + Ar) = w;i(r) + At@ (1:22)

This algorithm is quite straightforward and understandable, but in practice does not
have sufficient accuracy, since the error of the forward finite difference approxima-
tion is of the order of Ar. In order to improve the accuracy, the following algorithm
has already been presented.

If the new vector function u;(f) such as wu; (1) = w; () X e; () is introduced,
Eq. (1.19) can be written as

de,'(f) _
T = u,(t) (123)

By conducting the operator X e from the right side on the both sides of Eq. (1.15),
the following equation is obtained:

dw,‘([) _ | . '
T Xe(t) = 7T,(I)Xe.(f) (1.24)

The left-hand side of this equation leads to

dw; % g d(w, X e,-) s ¢ de,‘ dll,‘ Sk (1 25
ool P e i SR, " Jpone. B —w; X u 3
dt dr e dr ' )
By substituting this equation into Eq. (1.24), the following equation can be obtained:

d H | 1 2
l:it( ) 7 Tilt) X &(8) + wi(e) X ui() = 7Ti(t) X ei(r) — |wi(1)| “eilr)

(1.26)

}T,m X &) + A(Dei(r)

In the transformation from the first to the second expressions on the right-hand
side, we have used the identity aX(bXc)=(a-c)b—(a-b)c in evaluating
w X (w X e). The quantity \; (¢) in the third expression has been introduced in order
to satisfy the following relationship:

eu =e-(w Xe)=0 (1.27)



