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Preface

Particle Technology

Particle technology is a term used to refer to the science and technology related
to the handling and processing of particles and powders. Particle technology is
also often described as powder technology, particle science and powder
science. Powders and particles are commonly referred to as bulk solids,
particulate solids and granular solids. Today particle technology includes the
study of liquid drops, emulsions and bubbles as well as solid particles. In this
book only solid particles are covered and the terms particles, powder and
particulate solids will be used interchangeably.

The discipline of particle technology now includes topics as diverse as the
formation of aerosols and the design of bucket elevators, crystallisation and
pneumatic transport, slurry filtration and silo design. A knowledge of particle
technology may be used in the oil industry to design the catalytic cracking
reactor which produces gasoline from oil or it may be used in forensic science
to link the accused with the scene of the crime. Ignorance of particle technol-
ogy may result in lost production, poor product quality, risk to health, dust
explosion or storage silo collapse.

Objective

The objective of this textbook is to introduce the subject of particle technology
to students studying degree courses in disciplines requiring knowledge of the
processing and handling of particles and powders. Although the primary
target readership is amongst students of chemical engineering, the material
included should form the basis of courses on particle technology for students
studying other disciplines including mechanical engineering, civil engineer-
ing, applied chemistry, pharmaceutics, metallurgy and minerals engineering.
A number of key topics in particle technology are studied giving the funda-
mental science involved and linking this, wherever possible, to industrial
practice. The coverage of each topic is intended to be exemplary rather than
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exhaustive. This is not intended to be a text on unit operations in powder
technology for chemical engineers. Readers wishing to know more about the
industrial practice and equipment for handling and processing are referred to
the various handbooks of powder technology which are available.

The topics included have been selected to give coverage of broad areas
within particle technology: characterisation (size analysis), processing (fluid-
ized beds, granulation), particle formation (granulation, size reduction), fluid-
particle-separation (filtration, settling, gas cyclones), safety (dust explosions),
transport (pneumatic transport and standpipes). The health hazards of fine
particles or dusts are not covered. This is not to suggest in any way that this
topic is less important than others. It is omitted because of a lack of space and
because the health hazards associated with dusts are dealt with competently
in the many texts on Industrial or Occupational Hygiene which are now
available. Students need to be aware however, that even chemically inert dusts
or “nuisance dust”” can be a major health hazard. Particularly where products
contain a significant proportion of particles under 10 um and where there is a
possibility of the material becoming airborne during handling and processing.
The engineering approach to the health hazard of fine powders should be
strategic wherever possible; aiming to reduce dustiness by agglomeration, to
design equipment for containment of material and to minimise exposure of
workers.

The topics included demonstrate how the behaviour of powders is often
quite different from the behaviour of liquids and gases. Behaviour of particu-
late solids may be surprising and often counter-intuitive when intuition is
based on our experience with fluids. The following are examples of this kind
of behaviour:

When a steel ball is placed at the bottom of a container of sand and the
container is vibrated in a vertical plane, the steel ball will rise to the surface.

A steel ball resting on the surface of a bed of sand will sink swiftly if air is
passed upward through the sand causing it to become fluidized.

Stirring a mixture of two free-flowing powders of different sizes may result
in segregation rather than improved mixture quality.

Engineers and scientist are used to dealing with liquids and gases whose
properties can be readily measured, tabulated and even calculated. The boiling
point of pure benzene at one atmosphere pressure can be safely relied upon to
remain at 80.1°C. The viscosity of water at 20°C can be confidently predicted to
be 0.001 Pas. The thermal conductivity of copper at 100°C is 377 W/m.K. With
particulate solids, the picture is quite different. The flow properties of sodium
bicarbonate powder, for example, depends not only on the particle size distri-
bution, the particle shape and surface properties, but also on the humidity of
the atmosphere and the state of compaction of the powder. These variables are
not easy to characterise and so their influence on the flow properties is difficult
to predict with any confidence.

In the case of particulate solids it is almost always necessary to rely on
performing appropriate measurements on the actual powder in question
rather than relying on tabulated data. The measurements made are generally
measurements of bulk properties, such as shear stress, bulk density, rather
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than measurements of fundamental properties such as particle size, shape and
density. Although this is the present situation, in the not too distant future, we
will be able to rely on sophisticated computer models for simulation of
particulate systems. Mathematical modelling of particulate solids behaviour is
a rapidly developing area of research around the world, and with increased
computing power and better visualisation software, we will soon be able to
link fundamental particle properties directly to bulk powder behaviour. It will
even be possible to predict, from first principles, the influence of the presence
of gases and liquids within the powder or to incorporate chemical reaction.
Particle technology is a fertile area for research. Many phenomena are still
unexplained and design procedures rely heavily on past experience rather
than on fundamental understanding. This situation presents exciting challen-
ges to researchers from a wide range of scientific and engineering disciplines
around the world. Many research groups have web sites which are interesting
and informative at levels ranging from primary schools to serious researchers.
Students are encouraged to visit these sites to find out more about particle
technology. Our own web site at Monash University can be accessed via the
Chemical Engineering Department web page at
http:/ /www.eng.monash.edu.au/chemeng/

Martin Rhodes,
Mount Eliza, May 1998
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1

Single Particles in a Fluid

This chapter deals with the motion of single solid particles in fluids. The
objective here is to develop an understanding of the forces resisting the motion
of any such particle and provide methods for the estimation of the steady
velocity of the particle relative to the fluid. The subject matter of the chapter
will be used in subsequent chapters on the behaviour of suspensions of
particles in a fluid, fluidization, gas cyclones and pneumatic transport.

1.1 MOTION OF SOLID PARTICLES IN A FLUID

The drag force resisting very slow steady relative motion (creeping motion)
between a rigid sphere of diameter x and a fluid of infinite extent of viscosity
u is composed of two components (Stokes, 1851):

a pressure drag force, Fp, = 2mxul (1.1)
a shear stress drag force, F; = mxul (1.2)
Total drag force resisting motion, Fp = 3mxulU (1.3)

where U is the relative velocity.

This is known as Stokes’ law. Experimentally, Stokes” law is found to hold
almost exactly for single particle Reynolds number, Rep, < 0.1, within 1% for
Rep < 0.3, within 3% for Rep, < 0.5 and within 9% for Rep, < 1.0, where the
single particle Reynolds number is defined in Equation (1.4).

Single particle Reynolds number, Re, = xUp¢/u (1.4)
A drag coefficient, Cp is defined as Cp = R’/ (%pfuz) (1.5)

where R’ is the force per unit projected area of the particle.
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X
Thus, for asphere: R' = FD/ <T> (1.6)

and, Stokes’ law, in terms of this drag coefficient, becomes:
Cp = 24/Rep (1.7)

At higher relative velocities, the inertia of the fluid begins to dominate (the
fluid must accelerate out of the way of the particle). Analytical solution of the
Navier—Stokes equations is not possible under these conditions. However,
experiments give the relationship between the drag coefficient and the particle
Reynolds number in the form of the so-called standard drag curve (Figure 1.1).
Four regions are identified; the Stokes’ law region, the Newton’s law region in
which drag coefficient is independent of Reynolds number, an intermediate
region between the Stokes and Newton regions and the boundary layer
separation region. The Reynolds number ranges and drag coefficient correla-
tions for these regions are given in Table 1.1.

The expression given for Cp in the intermediate region in Table 1.1 is that of
Dallavalle (1948). An alternative is that of Schiller and Naumann (1933) (Equa-

__Creeping flow 1 Inertial flow
log Cp ﬂ Stokes' law . Intermediate : Newton's law : Boundary
! i . layer
. separation
i i i >
=0.3 = 500 ~2x105 log Rep

Figure 1.1 Standard drag curve for motion of a sphere in a fluid

Table 1.1 Reynolds number ranges for single particle drag coefficient

correlations
Region Stokes Intermediate Newton’s Law
Rep, range <03 0.3 < Rep <500 500 < Rep >2 X 10°

Co 24/Re, ~ 24/Re, + 0.4 ~ 0.44
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tion (1.8)), which fits the data with an accuracy of around +7% in the inter-
mediate range.

24
Cp = o+ 0.15Re}%7) (1.8)
P

1.2 PARTICLES FALLING UNDER GRAVITY THROUGH A FLUID

The relative motion under gravity of particles in a fluid is of particular interest.
In general, the forces of buoyancy, drag and gravity act on the particle:

gravity — buoyancy — drag = acceleration force (1.9)

A particle falling from rest in a fluid will initially experience a high accelera-
tion as the shear stress drag, which increases with relative velocity, will be
small. As the particle accelerates the drag force increases, causing the accelera-
tion to reduce. Eventually a force balance is achieved when the acceleration is
zero and a maximum or terminal relative velocity is reached. This is known as
the single particle terminal velocity.

For a spherical particle, Equation (1.9) becomes

axd ax3 , Tx?
TpPg_Tp‘g—R T—O (1.10)

Combining Equation (1.10) with Equation (1.5),

tx?

wx 112
— (Pp = P18 — Cogpilly—= =0 (1.11)
where Ur is the single particle terminal velocity. Equation (1.11) gives the
following expression for the drag coefficient under terminal velocity condi-

tions:

4 gx (pp-pf)>
Co =2 1.12
D=3 LI%( o (1.12)

Thus in the Stokes” law region, with Cp = 24/Re,, the single particle terminal
velocity is given by

x2(pp — P8
Lip = —= (1.13)

Note that in the Stokes’ law region the terminal velocity is proportional to the
square of the particle diameter.
In the Newton's law region, with Cp = 0.44, the terminal velocity is given by
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_ 1/2
Ur = 1.74 <x(ppp—p‘)g> (1.14)
f

Note that in this region the terminal velocity is independent of the fluid
viscosity and proportional to the square root of the particle diameter.

In the intermediate region no explicit expression for Ur can be found.
However, in this region, the variation of terminal velocity with particle and
fluid properties is approximately described by the following:

uT x x”, (pp _ pf)0.7, pf—0.29, #—0.43

Generally, when calculating the terminal velocity for a given particle or the
particle diameter for a given velocity, it is not known which region of

operation is relevant. One way around this is to formulate the dimensionless
groups, CDRe'fJ and Cp/ Rep:

e To calculate Uy, for a given size x. Calculate the group

4 x*pelpp — 1)
CoRep =3 + (1.15)
which is independent of Uy
(Note that Cp Ref, = 3Ar, where Ar is the Archimedes number)

For given particle and fluid properties, CpRe? is a constant and will
therefore produce a straight line of slope -2 if pTotted on the logarithmic
coordinates (log Cp versus log Rep) of the standard drag curve. The intersec-
tion of this straight line with the drag curve gives the value of Re, and hence
U (Figure 1.2).

4 Slope=-2
log Cp | (from CpRe? = constant)

~N A

Slope = +1
(from Cp/Rep = constant)

>
|

/ \ log Rep

X Uy

Figure 1.2 Method for estimating terminal velocity for a given size of particle and vice
versa (Note: Rep, is based on the equivalent volume sphere diameter, x,



