

European Practice in Gynaecology and Obstetrics

Ultrasound in Obstetrics and Gynaecology

Obsternics and Gyna

Edited by
Juriy W
Wladimiroff
Sturla H
Eik-Nes

ELSEVIER

Ultrasound in Obstetrics and Gynaecology

Board & Colling and Board & Colling and Gynaeco Street, ics and Gynaeco Street

Edited by

Juriy W Wladimiroff

Emeritus Professor of Obstetrics & Gynaecology Department of Obstetrics & Gynaecology Erasmus University Medical Centre Dr Molewater plein 40 3015 GD Rotterdam The Netherlands

and

Sturla H Eik-Nes

Professor of Obstetrics
Department of Obstretics and Gynaecology
National Center for Fetal Medicine
University Hospital of Trondheim
Trondheim
Norway

ELSEVIER

Edinburgh London New York Oxford Philadelphia St Louis Sydney Toronto 2009

ELSEVIER

© 2009, Elsevier Limited. All rights reserved.

The right of Juriy Wladimiroff and Sturla Eik-Nes to be identified as editors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publishers. Permissions may be sought directly from Elsevier's Health Sciences Rights Department, 1600 John F. Kennedy Boulevard, Suite 1800, Philadelphia, PA 19103-2899, USA: phone: (+1) 215 239 3804; fax: (+1) 215 239 3805; or email: healthpermissions@elsevier.com. You may also complete your request online via the Elsevier homepage (www.elsevier.com), by selecting 'Support and contact' and then 'Copyright and Permission'.

ISBN-13: 978-0-444-51829-3

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress

Notice

Neither the Publisher nor the Editors assume any responsibility for any loss or injury and/or damage to persons or property arising out of or related to any use of the material contained in this book. It is the responsibility of the treating practitioner, relying on independent expertise and knowledge of the patient, to determine the best treatment and method of application for the patient.

The Publisher

Working together to grow libraries in developing countries

BOOK AID

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

Sabre Foundation

ELSEVIER

your source for books, journals and multimedia in the health sciences

www.elsevierhealth.com

The publisher's policy is to use paper manufactured from sustainable forests

Ultrasound in **Obstetrics** and **Gynaecology**

2010年12月21日

European Practice in Gynaecology and Obstetrics

公公公公公公公公公公公公公公

In the same series

Invasive Carcinoma of the Cervix (Volume 1)

Volume Editor: G. Body ISBN: 2084299-306-3

Breech Delivery (Volume 2)
Volume Editor: W. Künzel

ISBN: 2-84299-314-4

Ovulation Induction (Volume 3)

Volume Editor: B. Tarlatzis

ISBN: 2-84299-316-0

Viral Infection in Pregnancy (Volume 4)

Volume Editor: G. Donders, B. Stray-Pedersen

ISBN: 2-84299-317-9

Endometrial Cancer (Volume 5)

Volume Editor: P. Bösze

ISBN: 0-444-51361-2

Paediatric and Adolescent Gynaecology (Volume 6)

Volume Editor: J.J. Amy

ISBN: 0-444-51360-4

Diabetes and Pregnancy (Volume 7)

Volume Editor: A. Van Assche

ISBN: 0-444-51513-5

Contraception and Family Planning (Volume 8)

Volume Editor: I. Milsom

ISBN: 0-444-51828-2

The Menopause (Volume 9)

Volume Editor: R. Erkkola

ISBN: 0-444-51830-4

www.elsevierhealth.com/series/ebcog/

Scientific Committee

Chairman: J. Lansac (France)

A. Antsaklis (Greece),

C. Benedetto (Italy),

L. Cabero-Roura (Spain),

G. Creatsas (Greece),

W. Dunlop (United Kingdom),

G. Gitsch (Germany),

W. Holzgreve (Switzerland),

P. Hornnes (Denmark),

H. Kölbl (Germany),

S. Lenz (Denmark),

Z. Novak Antolic (Slovenia),

E.M. Rutanen (Finland),

E. Steegers (The Netherlands),

B.C. Tarlatzis (Greece),

A. Templeton (United Kingdom),

A. Van Assche (Belgium),

J. Wladimiroff (The Netherlands)

Commissioning Editor: Pauline Graham

Development Editor: Lulu Stader, Greyling Peoples

Project Manager: Elouise Ball Designer: Kirsteen Wright

Illustration Manager: Bruce Hogarth

Contributors

Domenico Arduini MD

Associate Professor Cattedra Medicina dell'Eta Prenatale Universita di Tor Vergata Rome Italy Fetal biometry, estimation of gestational age, assessment of fetal growth

Bernard Benoit

Hôpital Princesse Grace

Monaco Three-dimensional and four-dimensional ultrasound application in prenatal diagnosis

Harm-Gerd K.Blaas MD, PhD National Centre for Fetal Medicine St Olav's Hospital University Hospital Trondheim Trondheim Norway Investigation of early pregnancy

Bruno Cacciatore MD, PhD

Professor of Obstetrics and Gynaecology Department of Obstetrics and Gynaecology Helsinki University Hospital Helsinki, Finland Doppler ultrasonography in gynaecology

José M. Carrera PhD

Professor of Obstetrics and Gynaecology Fetal Medicine Unit Department of Obstetrics and Gynaecology Institute University Dexeus Barcelona Spain Investigation of early pregnancy

Rabih Chaoui

Centre for Prenatal Diagnosis and Human Genetics Berlin Germany Three-dimensional and four-dimensional

ultrasound application in prenatal diagnosis

Frank A. Chervenak MD

Given Foundation Professor and Chairman Department of Obstetrics and Gynecology Weill Medical College of Cornell University New York USA Ethics and patient information

Werner Diehl

Department of Prenatal Diagnosis and Therapy AK Barmbek Hamburg Germany Multiple pregnancies

Francis A. Duck PhD. DSc

Medical Physicist Department of Medical Physics and Bioengineering Royal United Hospital Bath UK

Biological effects and safety aspects

Sturla H. Eik-Nes

Professor of Obstetrics and Gynaecology Department of Obstetrics and Gynaecology National Centre for Fetal Medicine University Hospital of Trondheim Trondheim Norway Physics and instrumentation Amniotic fluid and placental localization

Examining the cervix by transvaginal ultrasound

Annegret Geipel MD

Priv. Doz. Dr. Med Leitende Oberärztin Pränatalmedizin Abteilung für Geburtshilfe und Pränatale Medizin Universitätsklinikum Bonn Sigmand-Freud-Str. 25 53105 Bonn Germany Evaluation of fetal and uteroplacental blood flow

Ulrich Gembruch

Professor of Obstetrics and Gynaecology Abteilung fur Praenatale Medizin und Geburtshilfe Zentrum fuer Geburtshilfe und Frauenheilkunde Rheinische Friedrich-Wilhelms-Universitaet Bonn, Germany Evaluation of fetal and uteroplacental blood flow

Francesco Giacomello MD

Professor Department of Surgery University Tor Vergata Rome Italy Fetal biometry, estimation of gestational age, assessment of fetal growth

Kurt Hecher

Professor of Obstetrics and Gynaecology Department of Prenatal Diagnosis and Therapy AK Barmbek Hamburg, Germany Multiple pregnancies

Eric Jauniaux MD, PhD, MRCOG

Professor in Obstetrics and

Fetal Medicine

Academic Department of Obstetrics and Gynaecology

UCL

EGA Institute for Women's Health

Royal Free and University College

London

London

UK

Assessment of the placenta and umbilical cord

Davor Jurkovic MD, PhD

Consultant

Early Pregnancy and Gynaecology

Ultrasound Unit

Department of Obstetrics and

Gynaecology

King's College Hospital

London

UK

Gynaecological pathology: the uterus

Laurence B. McCullough PhD

Dalton Tomlin Chair in Medical

Ethics and Health Policy

Professor of Medicine and Medical

Ethics

Associate Director for Education

Center for Medical Ethics and Health

Policy

Baylor College of Medicine

Houston

Texas

USA

Ethics and patient information

Hylton B. Meire

Consultant Radiologist (Ultrasound)

Bromley

UK

Medico-legal implications of ultrasound imaging in obstetrics and gynaecology

Israel Meizner MD

Professor

Ultrasound Unit

Department of Obstetrics and

Gynecology

Rabin Medical Center - Beilinson Campus

Petah-Tikun and Sackler Faculty of

Medicine

Tel Aviv University

Tel Aviv, Israel

Prenatal diagnosis of fetal anomalies

Ana Monteagudo MD

Professor of Obstetrics and

Gynecology

Department of Obstetrics and

Gynecology

New York University School of

Medicine

New York

USA

Scanning techniques in obstetrics and

gynaecology

Eduard J.H. Mulder Msc. PhD

Professor

Department of Perinatology and

Gynaecology

University Medical Center

Utrecht

The Netherlands

Fetal movement patterns and behavioural

states

Kypros H. Nicolaides MD

Professor of Fetal Medicine

Department of Obstetrics & Gynaecology

Kings's College Hospital

London

UK

Prenatal diagnosis of fetal anomalies

David A. Nyberg MD

Seattle Ultrasound Associates

Seattle

USA

Normal fetal anatomy at 18-22 weeks

Rüdiger Osmers MD, PhD

Professor of Obstetrics and

Gynaecology

Department of Obstetrics and Gynaecology

University Hospital Gottingen

Gottingen

Germany

Gynaecological pathology: tubes and ovaries

Doppler ultrasonography in gynaecology

Gianluigi Pilu MD

Associate Professor of Obstetrics and

Gynaecology

Department of Obsetrics and

Gynaecology

University of Bologna

Bologna

Italy

Prenatal diagnosis of fetal anomalies

Roberto Romero MD

Professor of Obstetrics and

Gynecology

Wayne State University

and

Chief of the Perinatology Research

Branch of the National Institute of Child Health and Human

Development

National Institutes of Health

Bethsedu, MD

USA

Prenatal diagnosis of fetal anomalies

Rehan Salim MRCOG

Early Pregnancy and Gynaecology

Ultrasound Unit

Department of Obstetrics and

Gynaecology

King's College Hospital

London

UK

Gynaecological pathology: the uterus

Kjell A. Salvesen Dr Med, PhD

National Centre for Fetal Medicine

St Olav's Hospital

University Hospital Trondheim

Trondheim

Norway

Examining the cervix by transvaginal

ultrasound

Waldo Sepulveda

Professor of Obstetrics and Fetal

Medicine

University of Santiago de Chile

San Jose Hospital

and

Director

Fetal Medicine Center

Clinica Las Cordes

Santiago, Chile

Prenatal diagnosis of fetal anomalies

Povilas Sladkevicius MD, PhD

Department of Obstetrics and

Gynaecology

Malmö University Hospital

Lund University

Malmö

Sweden

Normal gynaecological anatomy (uterus,

tubes, ovaries)

Vivienne L. Souter MD, MRCOG

Seattle Ultrasound Associates

Seattle

USA

Normal fetal anatomy at 18-22 weeks

Ilan E. Timor-Tritsch MD

Professor of Obstetrics and Gynecology

Department of Obstetrics and

Gynecology

New York University School of Medicine

New York

Scanning techniques in obstetrics and gynaecology

Lil Valentin MD, PhD

Professor in Obstetrics and

Gynaecology

Department of Obstetrics and

Gynaecology

Malmö University Hospital

Lund University

Malmö

Sweden

Normal gynaecological anatomy (uterus,

tubes, ovaries)

Yves Ville MD

Professor of Obstetrics and Gynaecology

Service Gyneco/Obstetrique

Centre Hospitalier Inter Communal

Poissy

France

Invasive procedures in obstetrics

Gerard H.A. Visser MD, PhD

Professor of Obstetrics and

Gynaecology

Department of Perinatology and

Gynaecology

University Medical Center

Utrecht

The Netherlands

Fetal movement patterns and behavioural

states

Kim Wherey MD

Seattle Ultrasound Associates

Seattle

USA

Normal fetal anatomy at 18-22 weeks

J. W. Wladimiroff

Emeritus Professor of Obstetrics &

Gynaecology

Department of Obstetrics &

Gynaecology

Erasmus University Medical Centre

Dr Molewater plein 40

3015 GD Rotterdam

The Netherlands

Amniotic fluid and placental localization

Preface

This textbook is the result of a joint venture between the International Society for Ultrasound in Obstetrics and Gynaecology (ISUOG) and the European Board and College of Obstetrics and Gynaecology (EBCOG). Both organizations play an important role in training.

The book aims to provide the reader with the information necessary for everyday ultrasonography in obstetrics and gynaecology, rather than a summary of the latest developments in the field.

The book follows the traditional pattern of starting with the physical and biological aspects of diagnostic ultrasound, followed by a wide range of clinical applications in obstetrics and gynaecology. Each chapter has been written by one or more experts actively involved in ultrasound teaching. Ultrasound images are presented either in the text or separately on a CD at the end of the book. Multiple choice questions are presented at the end to allow the reader to test his or her knowledge.

We hope that this textbook will serve all those who are active in day-to-day ultrasound scanning.

Juriy W. Wladimiroff, Sturla H. Eik-Nes

Contents

	Contributors Preface	vii xiii	8.	Examining the cervix by transvaginal ultrasound K.Å. Salvesen, S.H. Eik-Nes	133
1.	Physics and instrumentation S.H. Eik-Nes	1	9.	Fetal biometry, estimation of gestational age, assessment	
2.	Biological effects and safety aspects	21		of fetal growth D. Arduini, F. Giacomello	141
3.	F.A. Duck Scanning techniques in obstetrics and gynaecology I.E. Timor-Tritsch, A. Monteagudo	33	10.	Prenatal diagnosis of fetal anomalies G. Pilu, K.H. Nicolaides, I. Meizner, R. Romero, W. Sepulveda	157
4.	Investigation of early pregnancy HG.K. Blaas, J.M. Carrera	57	11.	Evaluation of fetal and uteroplacental blood flow A. Geipel, U. Gembruch	209
5.	Normal fetal anatomy at 18–22 weeks D.A. Nyberg, V.L. Souter	79	12.	Invasive procedures in obstetrics Y. Ville	229
6.	10 0011201011	l 109	13.	Multiple pregnancies K. Hecher, W. Diehl	247
7.	J.W. Wladimiroff, S.H. Eik-Nes Assessment of the placenta and umbilical cord		14.	Three-dimensional and four-dimensional ultrasour application in prenatal	ıd
	E. Jauniaux			diagnosis R. Chaoui, B. Benoit	259

15.	Fetal movement patterns	
	and behavioural states	271
	G.H.A. Visser, E.J.H. Mulder	

- 16. Normal gynaecological anatomy (uterus, tubes, ovaries) L. Valentin, P. Sladkevicius
- 17. Gynaecological pathology: the uterus 299 R. Salim, D. Jurkovic

285

18. Gynaecological pathology: tubes and ovaries 313 R. Osmers

19.	Doppler ultrasonography	
	in gynaecology	329
	B. Cacciatore, R. Osmers,	
	J.W. Wladimiroff	

- 20. Medico-legal implications of ultrasound imaging in obstetrics and gynaecology 333 H.B. Meire
- 21. Ethics and patient information 339 F.A. Chervenak, L.B. McCullough
- 22. Test yourself questions and answers 353 Index 371

1

Physics and instrumentation

Sturla H Eik-Nes

ABSTRACT

This chapter provides an overview of the fundamental physical principles that make it possible to produce images of human tissue using sound. The physical laws are explained without the use of complicated formulas. Sound is a mechanical vibration in a medium such as air or human tissue. The upper frequency limit for sound to be heard by humans is 20 kHz. Frequencies above 20 kHz are called ultrasound. Medical images are made with a frequency above 3 MHz. The basic principle for making images of human tissue is to send a pulse into the tissue with a transducer and detect the echoes emerging from structures in the tissue. Imaging may be done in real time by electronic scanning. A variety of sizes and shapes of transducers have been produced for the various applications of ultrasound in medical diagnosis. A proper transducer must be used for a specific task. The ultrasound beam is the essential tool to make images. It must be focused by the user and the image must be properly adjusted with respect to the gain. Measurements can be made and a basic understanding of the resolution in the three planes is necessary for measurements and interpretation of the images. The main artifacts such as edge shadows, attenuation shadows, enhancements and reverberation must be understood. Basic principles of ultrasound scanning must be followed to extract the maximum information from the scan.

KEYWORDS

A-mode, artifacts, B-mode, focus, M-mode, real-time scanning, technical principles of ultrasound in obstetrics and gynaecology, time gain compensation.

INTRODUCTION

In the practice of clinical ultrasound in obstetrics and gynaecology, it is essential that the examiner has a basic understanding of the physics that makes it possible

MMMMMMMMM

to produce images of human tissue using sound. In addition, the examiner must be able to handle artifacts properly, know about the basic performance of the instrument and be aware of artifacts, safety and risk factors.

This chapter provides an overview of the fundamental physical principles without the use of complicated formulas to explain the physical laws. The focus is to give the reader an overall understanding of how an ultrasound machine works and the skill to operate the machine and to manage the necessary adjustments in order to produce images of high quality for diagnostic use. For indepth knowledge of the physics of ultrasound, the reader is referred to excellent textbooks. (See selected list at the end of this chapter.)

SOUND

Sound is mechanical vibrations travelling in a physical medium such as air, water, metal or even human tissue. Whether the airborne vibrations come directly from the source or are reflected, they produce impressions on the eardrums of our vestibular organs. We interpret these vibrations as sound.

Sound may be categorized according to various frequency levels:

- infrasound (0–20 Hz)
- audible sound (20–20 kHz)
- ultrasound (>20 kHz)
- diagnostic ultrasound (1–20 MHz).

Humans do not hear the infrasound but other species such as whales, dolphins, elephants, hippopotamuses and rhinoceros do; they use infrasound to communicate with other members of their species over long distances. The upper frequency limit for humans is $20\,\mathrm{kHz}$. Frequencies above $20\,\mathrm{kHz}$ are called ultrasound. Some species may hear sound frequencies which for humans are categorized as ultrasound, for example mice ($10-70\,\mathrm{kHz}$), dogs ($40-60\,\mathrm{kHz}$) and bats ($20-200\,\mathrm{kHz}$). There is even some evidence that bats utilize the change in pitch of the echo to determine the relative movement of the object that reflects sound – the Doppler effect. Marine mammals may produce very complex signals ranging from low frequencies for long-range use to high frequencies for local chatting!

SHORT HISTORY OF THE DEVELOPMENT OF ULTRASOUND IN MEDICINE

In 1912, the passenger ship *Titanic* hit an iceberg on its maiden trip crossing the Atlantic from Southampton to New York. In the time that followed, physicists took an interest in using sound to detect large objects submerged in water. Initially their research for that purpose was unsuccessful. During World War I, the French physicist Paul Langevin was responsible for developing the hydrophones needed to detect submarines; this underwater sonar technology resulted in the first sinking of a German submarine in 1916. In 1917, Langevin invented the quartz sandwich transducer which served as the basis for the modern ultrasonic era. Between

\$

World War I and World War II, the development of sonar (Sound Navigation and Ranging System) and radar (Radio Detection and Ranging) took place. The latter technique used electromagnetic waves rather than ultrasound.

The next important step was the use of ultrasound to detect flaws in metal using high-frequency ultrasound. The metal flaw detectors became increasingly important as World War II was approaching, but were reported after the war.^{2,4} After World War II, Howry and Bliss, in Denver, started to experiment with sonar equipment and amplifiers from the navy.⁷ They developed a pulse-echo technique in 1948–49, and later produced cross-sectional images of a human partly submerged in water. At the same time, Wild in Minneapolis developed a breast scanner and actually made a diagnosis of breast lesions with his device.¹² The Swedish physician Inge Edler and physicist Helmut Hertz, at the University of Lund, borrowed a metal flaw detector from Kockum's Shipyard in Malmö, Sweden. In 1953, they managed to trace the movements of the human cardiac valves by means of the sound waves emitted and received by their modified instrument.⁵ This was the start of a new era in cardiology relying on sound technology.⁶

The next breakthrough was by the Scottish physician Ian Donald, in Glasgow, who conducted the basic research for the development of a machine for clinical use employing ultrasound to make two-dimensional images of human tissue. Donald had served in the Air Force during World War II and his past experience influenced his prototype machine, which consisted of two metal flaw detectors. His *Lancet* paper of 1958, 'Investigation of abdominal masses by pulsed ultrasound', is considered to be one of the most important for the development of clinical ultrasound.³

Since the late 1950s, the development of ultrasound in medicine in general and in the field of obstetrics and gynaecology in particular has continued in an exponential way. Breakthrough advances have been repeatedly made in spite of claims that the development of ultrasound in medicine has reached its physical limits.

SOUND, WAVES AND PROPAGATION

Sound is a mechanical vibration in a medium. The medium may be, for example, air, water or human soft tissue. The sound wave propagates through the medium as a longitudinal compression wave. When we think of waves we may picture a stone being thrown into a quiet lake and observe the concentric rings that propagate from the centre, or we may think of the waves in the ocean as seen from the shore or from a boat. These waves are *transversal* waves. Sound waves, however, are *longitudinal* waves and the medium that they travel through is subject to cyclic variations in pressure as the medium is being compressed or rarefied (Fig. 1.1).

Make a small experiment by putting your index finger on the top of your larynx, then make the sound of a z-z-z. With your finger you will feel the vibrations caused by your vocal cords that are your own sound system, that cause the z-z-z to be heard in the room. You have now produced longitudinal sound waves that travel

Fig. 1.1 (*Upper panel*) A schematic illustration of a sound wave as it travels in a medium causing periodic compressions and rarefaction of the medium. (*Lower panel*) The dislocation of the particles.

through the room and cause compression and rarefaction of the air in their path. When the sound waves hit the eardrums of someone in the room, the process is reversed and causes the eardrums to vibrate and the person will hear your z-z-z.

The sound wave is a longitudinal wave caused by compression and rarefaction of a physical medium in the direction of the movement of the wave.

This sound wave may further be described by intensity and frequency.

If you have a piano, you can carry out a small experiment in your living room by hitting A above middle C. You will hear a chamber tone with a frequency of 440 Hz. If you move up one octave on your piano and hit A, you will hear it at a frequency of 880 Hz. If you move up one more octave to the next A, you will hear an A note with the frequency of 1760 Hz.

The frequency tells us about the degree of highness or lowness of a tone. The frequency is the number of vibrations per second that produce the sound.

Hit the A on your piano very lightly and you will barely hear the chamber tone of 440 Hz; hit the key with force and you will hear the same chamber tone with the frequency of 440 Hz, but much louder. This tells us that the same tone may differ in *intensity* or *loudness*.

The intensity tells us something about the loudness or strength of the sound signal.

A sound wave travelling in a medium produces compression and rarefaction of the medium as shown in Figure 1.1. The velocity of propagation of the sound wave is dependent on the medium and is $330\,\text{m/s}$ in air, $1480\,\text{m/s}$ in water, $1589\,\text{m/s}$ in