ROGER S. PRESSMAN

A PRACTITIONER’S APPROACH

FIFTH EDITION

A PRACTITIONER’'S APPROACH

Bonus Chapter:

Agile Development

Roger S. Pressman, Ph.D

Coming Spring 2004-New Edition of Pressman's
Software Engineering: A Practitioner's Approach
containing this material on Agile Development,
_extensive new coverage on Web Engineering, and much more.

% Higher Education

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogotd Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill companies

% Higher Education

BONUS CHAPTER: AGILE DEVELOPMENT, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright " 2005 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval sys-
tem, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any
network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

1234567890BKMBKM 09876543

ISBN 0-07-298627-1

Publisher: Elizabeth A. Jones

Managing developmental editor: Emily J. Lupash
Marketing manager: Dawn R. Bercier

Lead project manager: Jill R. Peter

Lead production supervisor: Sandy Ludovissy
Senior media project manager: Jodi K. Banowetz
Senior media technology producer: Eric A. Weber
Senior designer: David W. Hash

Cover designer: Rhiannon Erwin

Cover illustrator: Joseph Gilians

Compositor: Carlisle Communications, Ltd.
Typeface: 8.5/13.5 Leawood

www.mhhe.com

KEey
CONCEPTS

agile manifesto . . .1
agile modeling . . .26

agile process

gty i...... 4

agility
principles4

ASD i B
Crystal20
DSDM.........l6

Extreme
Programming9

) BB)

pair
programming12

politics9
refactoring11
Scrum18

feam
characteristics8

»g AGILE
DEVELOPMENT

n 2001, Kent Beck and 16 other noted software developers, writers, and con-
sultants [BECO1a] (referred to as the “Agile Alliance”) signed the “Manifesto
for Agile Software Development.” It stated:

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

A manifesto is normally associated with an emerging political movement—one
that attacks the old guard and suggests revolutionary change (hopefully for the
better). In some ways, that's exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with
us for many years, it has only been during the past decade that these ideas have
crystallized into a “movement.” In essence, agile! methods were developed in
an effort to overcome perceived and actual weaknesses in conventional soft-
ware engineering. Agile development can provide important benefits, but it is
not applicable to all projects, products, people, and situations. It is also not

Agile methods are sometimes referred to as light or lean methods.

PART ONE THE SOFTWARE PROCESS

antithetical to solid software engineering practice and can be applied as an over-
riding philosophy for all software work.

In the modern economy, it is often difficult or impossible to predict how a com-
puter-based system (e.g., a Web-based application) will evolve as time passes. Mar-
ket conditions change rapidly, end-user needs evolve, and new competitive threats
emerge without warning. In many situations, we no longer are able to define re-
quirements fully before the project begins. Software engineers must be agile enough
to respond to a fluid business environment.

Does this mean that a recognition of these modern realities causes us to discard
valuable software engineering principles, concepts, methods, and tools? Absolutely
not! Like all engineering disciplines, software engineering continues to evolve. It can
be adapted easily to meet the challenges posed by a demand for agility.

In a thought-provoking book on agile software development, Alistair Cockburn
[COCO02a] argues that the prescriptive process models introduced in Chapter 3 have
a major failing: they forget the frailties of the people who build computer software.
Software engineers are not robots. They-exhibit great variation in working styles and
significant differences in skill level, creativity, orderliness, consistency, and spon-
taneity. Some communicate well in written form, others do not. Cockburn argues
that process models can “deal with people’s common weaknesses with [either] dis-
cipline or tolerance” [COC02a] and that most prescriptive process models choose
discipline. He states: “Because consistency in action is a human weakness, high dis-
cipline methodologies are fragile” [COC02a].

If process models are to work, they must provide a realistic mechanism for en-
couraging the discipline that is necessary, or they must be characterized in a man-

CHAPTER 4 AGILE DEVELOPMENT 3

ner that shows “tolerance” for the people who do software engineering work. In-
variably, tolerant practices are easier for software people to adopt and sustain, but
(as Cockburn admits) they may be less productive. Like most things in life, trade-offs
must be considered.

CovaB

Don’t make the
mistake of assuming
that agility gives you
license to hack out
solutions. A process is
required, and discipline
is essential.

Just what is agility in the context of software engineering work? Ivar Jacobson
[JACO02] provides a useful discussion:

Agility has become today's buzzword when describing a modern software process.
Everyone is agile. An agile team is a nimble team able to appropriately respond to
changes. Change is what software development is very much about. Changes in the
software being built, changes to the team members, changes because of new technol-
ogy, changes of all kinds that may have an impact on the product they build or the proj-
ect that creates the product. Support for changes should be built-in everything we do
in software, something we embrace because it is the heart and soul of software. An ag-
ile team recognizes that software is developed by individuals working in teams and
that the skills of these people, their ability to collaborate is at the core for the success
of the project.

In Jacobson'’s view, the pervasiveness of change is the primary driver for agility. Soft-
ware engineers must be quick on their feet if they are to accommodate the rapid
changes that Jacobson describes.

specifc, aggressively change embracing, and growth oriented.

But agility is more than an effective response to change. It also encompasses the
philosophy espoused in the manifesto noted at the beginning of this chapter. It en-
courages team structures and attitudes that make communication (among team
members, between technologists and business people, between software engineers
and their managers) more facile. It emphasizes rapid delivery of operational soft-
ware and de-emphasizes the importance of intermediate work products (not always
a good thing); it adopts the customer as a part of the development team and works
to eliminate the “us and them” attitude that continues to pervade many software
projects; it recognizes that planning in an uncertain world has its limits and that a
project plan must be flexible.

Agility can be applied to any software process. However, to accomplish this, it
is essential that the process be designed in a way that allows the project team to
adapt tasks and to streamline them, conduct planning in a way that understands

4 PART ONE THE SOFTWARE PROCESS

the fluidity of an agile development approach, eliminate all but the most essential
work products and keep them lean, and emphasize an incremental delivery strat-
egy that gets working software to the customer as rapidly as feasible for the prod-
uct type and operational environment.

Any agile software process is characterized in a manner that addresses three key as-
sumptions [FOW02] about the majority of software projects:

1. ltis difficult to predict in advance which software requirements will persist
and which will change. It is equally difficult to predict how customer priori-
ties will change as a project proceeds.

2. For many types of software, design and construction are interleaved. That is,
both activities should be performed in tandem so that design models are
proven as they are created. It is difficult to predict how much design is neces-
sary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a
planning point of view) as we might like.

Given these three assumptions, an important question arises: How do we create a
process that can manage unpredictability? The answer, as we have already noted,
lies in process adaptability (to rapidly changing project and technical conditions). An
agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore,
an agile software process must adapt incrementally. To accomplish incremental
adaptation, an agile team requires customer feedback (so that the appropriate adap-
tations can be made). An effective catalyst for customer feedback is an operational
prototype or a portion of an operational system. Hence, an incremental development
strategy should be instituted. Software increments (executable prototypes or a portion
of an operational system) must be delivered in short time periods so that adaptation
keeps pace with change (unpredictability). This iterative approach enables the cus-
tomer to evaluate the software increment regularly, provide necessary feedback to
the software team, and influence the process adaptations that are made to accom-
modate the feedback.

WebRef

4.2.1 Agility Principles

A set of 12 agility principles has been developed by the Agile Alliance (see [AGI03],
[FOWO01]) to establish a basis for any agile process model. Glen Alleman [ALL02]
presents each of these principles (noted in italics) and then considers the domain in

o
e,

POINT
Although agile
processes embrace
change, it is sfill
important fo examine
the reasons for
change.

%
POINT
The agile philosophy
encourages
incremental delivery,
but o be effective,
increments must be
planned.

CHAPTER 4 AGILE DEVELOPMENT 5

which the principles are applicable and issues (including critique) associated with
their applicability within that domain.?

Our highest priority Is to satisfy the customer through early and continuous deliv-
ety of valuable software. The concept of customer value for work performed is
well developed in any business domain. However definitions of value, early,
and satisfaction are not provided, so domain specific definitions need to be de-
veloped before this principle can be of practical use in a specific circumstance.

Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage. Agile process con-
tributes to success in these situations. This might be considered the
operational definition of agility. Early and repetitive feedback on product or
project design is good practice in many engineering disciplines.

But changing requirements may be an indication of changing business val-
ues, unstable requirements, or a lack of understanding of the desired busi-
ness outcome. Without stable business success metrics, the creation of
software to address unstable requirements is not good business strategy.

A close examination of why these requirements are changing is an important
risk assessment step in determining if agile process will be successful. Late
detail binding and separation of concerns can support changing require-
ments; however, decisions must still be made to identify the areas that re-
quire flexibility to deal with changing requirements.

Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale. Agility helps here, but in
general, iterative and incremental methods exhibit this as a behavior, includ-
ing spiral methods—without the necessary relabeling of agile. The concept of
rapid prototyping is standard practice in many manufacturing and engineer-
ing processes. The granularity of the deliverables is the issue here. The ques-
tion is—what is the appropriate absorption rate of the software iteration for a
specific domain?

Business people and developers must work together daily throughout the project.
This is common business practice in successful organizations. The definition
of the customer is restrictive in many of the agile process methods, especially
when building products rather than projects. The granularity of the interac-
tion is the issue. If the customer is co-located, direct daily interaction is possi-
ble. If not, then some other form of communication is necessary.
Documentation then plays a more significant role.

2 The remainder of this section is reprinted from http://www.niwotridge.com/BookReview/
AAPrinciples.htm with the permission of Glen Alleman of Niwot Ridge Consulting.

Gpwc:’

Working software is
important, but don’t
forget that it must also
exhibit a variety of
quality attributes
including reliability,
usability, and maintain-
ability.

PART ONE THE SOFTWARE PROCESS

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done. This is common business
practice in successful organizations—it's the people that make a project suc-
cessful. From Jack Welch [ex-CEO of General Electric Co.] down to the local
coffee shop, all business managers understand this principle. Practicing this
principle, however, is much more difficult.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. Although this is the basis of
agile processes, this is neither unique nor many times practical and in many
cases may not even be desirable. Written specifications are useful in many
instances, and in others instances they are imposed by contract, geogra-
phy, regulatory, or safety requirements. This principle is a tautology, but
provides no suggestions for alternatives.

Working software is the primary measure of progress. Although working soft-
ware is an outcome of development, there are other critical deliverables
and measures of progress as well that are not addressed by many of the
agile processes. The focus on software alone misses many opportunities
for process improvement prior to and after the generation of code.

8. Agile processes promote sustainable development. The sponsors, developers,

10.

11.

12.

and users should be able to maintain a constant pace indefinitely. Although a
goal, the agile process has little to say on how to achieve this in practice
for a specific environment. As well, the statement on sustainability is a
conjecture not yet supported by field evidence.

Continuous attention to technical excellence and good design enhances agility.
This is the basis of many good engineering practices. The metrics of tech-
nical excellence and good design are not stated, leaving them open to in-
terpretation.

Simplicity—the art of maximizing the amount of work not done—is essential.
Without a context, the term simplicity has no meaning. What is simple in
one domain may appear complex when viewed from another. This princi-
ple fails to address nonfunctional and extra-functional requirements of
product and project-based processes which are the sources of much of the
complexity in large scale systems.

The best architectures, requirements, and designs emerge from self-organizing
teams. This is conjecture and is not based on analytical measurements.
This principle does not state the domains in which it is applicable. The sci-
ence of systems engineering has much to say here, but no recognition to
this previous work is provided.

At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly. This is good team development

o

You don't have to
choose between agility
ond software engi-
negring. Instead,
define a software engi-
neering approach that
is agile.

CHAPTER 4 AGILE DEVELOPMENT 7

practice independent of the software environment. No metrics are provided
by which to assess past behavior or adjust future behavior.

Not every agile process model applies these 12 principles with equal weight, and
some models choose to ignore (or at least downplay) the importance of one or more
of the principles. However, the principles define an agile “spirit” that is maintained
in each of the agile process models presented in this chapter.

um for rapid feedback, both on the development process and on the pmdudM

4.2.2 The Politics of Agile Development

There is considerable debate (sometimes strident) about the benefits and applicability
of agile software development as opposed to more conventional software engineering
processes. Jim Highsmith [HIG02a] (facetiously) states the extremes when he charac-
terizes the feeling of the pro-agility camp (“agilists”). “Traditional methodologists are
a bunch of stick-in-the-muds who'd rather produce flawless documentation than a
working system that meets business needs.” As a counterpoint, he states (again, face-
tiously) the position of the traditional software engineering camp: “Lightweight, er,
‘agile’ methodologists are a bunch of glorified hackers who are going to be in for a
heck of a surprise when they try to scale up their toys into enterprise-wide software.”

Like all software technology arguments, this methodology debate risks degener-
ating into a religious war. If warfare breaks out, rational thought disappears and be-
liefs rather than facts guide decision-making.

No one is against agility. The real question is: What is the best way to achieve it?
As important, how do we build software that meets customers’ needs today and ex-
hibits the quality characteristics that will enable it to be extended and scaled to meet
customers’ needs over the long term?

There are no absolute answers to either of these questions. Even within the agile
school itself, there are many proposed process models (Section 4.3), each with a sub-
tly different approach to the agility problem. Within each model there is a set of
“ideas” (agilists are loath to call them “work tasks”) that represent a significant de-
parture from conventional software engineering. And yet, many agile concepts are
simply adaptations of good software engineering concepts. Bottom line: there is
much that can be gained by considering the best of both schools and virtually noth-
ing to be gained by denigrating either approach.

The interested reader should see [HIGO1], [HIG02a], and [DEMO02] for an enter-
taining summary of the important technical and political issues.

4.2.3 Human Factors

Proponents of agile software development take great pains to emphasize the im-
portance of “people factors” in successful agile development. As Cockburn and

- What key
traits must
exist among the
people on an
effective software
team?

PART ONE THE SOFTWARE PROCESS

Highsmith [COCO1] state, “Agile development focuses on the talents and skills of
individuals, molding the process to specific people and teams.” The key point in
this statement is that the process molds to the needs of the people and team, not the
other way around.’

)' '\ﬂmmms as barely sufficient for one team is either overly sufficient or insufficient for another.” e

If members of the software team are to drive the characteristics of the process that
is applied to build software, a number of key traits must exist among the people on
an agile team and the team itself:

Competence. In an agile development (as well as conventional software engi-
neering) context, “competence” encompasses innate talent, specific software re-
lated skills, and overall knowledge of the process that the team has chosen to
apply. Skill and knowledge of process can and should be taught to all people who
serve as agile team members.

Common focus. Although members of the agile team may perform different
tasks and bring different skills to the project, all should be focused on one goal—to
deliver a working software increment to the customer within the time promised. To
achieve this goal, the team will also focus on continual adaptations (small and
large) that will make the process fit the needs of the team

Collaboration. Software engineering (regardless of process) is about assessing,
analyzing, and using information that is communicated to the software team; cre-
ating information that will help the customer and others understand the work of
the team; and building information (computer software and relevant databases)
that provides business value for the customer. To accomplish these tasks, team
members must collaborate—with one another, with the customer, and with busi-
ness managers.

Decision-making ability. Any good software team (including agile teams)
must be allowed the freedom to control its own destiny. This implies that the
team is given autonomy—decision-making authority for both technical and proj-
ect issues.

Fuzzy problem-solving ability. Software managers should recognize that
the agile team will continually have to deal with ambiguity and will continually
be buffeted by change. In some cases, the team must accept the fact that the
problem they are solving today may not be the problem that needs to be solved
tomorrow. However, lessons learned from any problem solving activity (includ-

3 Most successful software engineering organizations recognize this reality regardless of the process
model they choose.

[/
.

POINT

A self-organizing team
is in control of the
work it performs. The
team makes its own
commitments and
defines plans o
achieve them.

CHAPTER 4 AGILE DEVELOPMENT 9

ing those that solve the wrong problem) may be of benefit to the team later in
the project.

Mutual trust and respect. The agile team must become what DeMarco and
Lister [DEM98] call a “jelled” team (see Chapter 21). A jelled team exhibits the trust
and respect that are necessary to make them “so strongly knit that the whole is
greater than the sum of the parts” [DEM98].

Self-organization. In the context of agile development, self-organization im-
plies three things: (1) the agile team organizes itself for the work to be done; (2) the
team organizes the process to best accommodate its local environment; (3) the
team organizes the work schedule to best achieve delivery of the software incre-
ment. Self-organization has a number of technical benefits, but more importantly it
serves to improve collaboration and boost team morale. In essence, the team
serves as its own management. Ken Schwaber [SCH02] addresses these issues
when he writes: “The team selects how much work it believes it can perform
within the iteration, and the team commits to the work. Nothing demotivates a
team as much as someone else making commitments for it. Nothing motivates a
team as much as accepting the responsibility for fulfilling commitments that it
made itself.”

The history of software engineering is littered with dozens of obsolete process
descriptions and methodologies, modeling methods and notations, tools, and tech-
nology. Each flared in notoriety and was then eclipsed by something new and (pur-
portedly) better. With the introduction of a wide array of agile process models—each
contending for acceptance within the software development community—the agile
movement is following the same historical path.*

noes through methodologies like a 14-year-old goes through doilling,
Stephen

In the sections that follow, we present an overview of a number of different agile
process models. There are many similarities (in philosophy and practice) among
these approaches. Our intent will be to emphasize those characteristics of each
method that make it unique. It is important to note that all agile models conform (to
a greater or lesser degree) to the Manifesto for Agile Software Development and the
principles noted in Section 4.2.1.

4 This is not a bad thing. Before one or more models or methods are accepted as a de facto standard,
all must contend for the hearts and minds of software engineers. The “winners” evolve into best
practice while the “losers” either disappear or merge with the winning models.

10

PART ONE THE SOFTWARE PROCESS

The Extreme
Programming
Process

An excellent overview
of “rules” for XP con
be found ot
mgth;pro
"Im] ol

What is an
XP “story”?

simple design spike solutions
CRC cards profotypes
user stories f
valves
acceptance fest criteria
iteration plan

refactoring

/
ﬂ / pair programming

unit test
continuous integration

Release

software increment
project velocity computed

acceptance testing

4.3.1 Extreme Programming (XP)

Although early work on the ideas and methods associated with Extreme Program-
ming (XP) occurred during the late 1980s, the seminal work on the subject, written
by Kent Beck [BEC99] was published in 1999. Subsequent books by Jeffries et al
JEFO1] on the technical details of XP, and additional work by Beck and Fowler
[BECO1b] on XP planning, flesh out the details of the method.

XP uses an object-oriented approach (Part 2 of this book) as its preferred devel-
opment paradigm. XP encompasses a set of rules and practices that occur within the
context of four framework activities: planning, design, coding, and testing. Figure 4.1
illustrates the XP process and notes some of the key ideas and tasks that are associ-
ated with each framework activity. Key XP activities are summarized in the para-
graphs that follow.

Planning. The planning activity begins with the creation of a set of stories (also
called user stories) that describe required features and functionality for software to
be built. Each story (similar to use-cases described in Chapters 7 and 8) is written by
the customer and is placed on an index card. The customer assigns a value (i.e., a
priority) to the story based on the overall business value of the feature or function.®
Members of the XP team then assess each story and assign a cost—measured in de-
velopment weeks—to it. If the story will require more than three development weeks,

5 The value of a story may also depend on the presence of another story.

A worthwile XP

“plonning game” con

be found of
<2.com/cgi/wiki?

CHAPTER 4 AGILE DEVELOPMENT 11

the customer is asked to split the story into smaller stories, and the assignment of
value and cost occurs again. It is important to note that new stories can be written
at any time.

Customers and the XP team work together to decide how to group stories into the
next release (the next software increment) to be developed by the XP team. Once a
basic commitment (agreement on stories to be included, delivery date, and other
project matters) is made for a release, the XP team orders the stories that will be de-
veloped in one of three ways: (1) all stories will be implemented immediately (within
a few weeks); (2) the stories with highest value will be moved up in the schedule and
implemented first; or (3) the riskiest stories will be moved up in the schedule and im-
plemented first.

After the first project release (also called a software increment) has been deliv-
ered, the XP team computes project velocity. Stated simply, project velocity is the
number of customer stories implemented during the first release. Project velocity can
then be used to (1) help estimate delivery dates and schedule for subsequent
releases, and (2) determine whether an over-commitment has been made for all sto-
ries across the entire development project. If an over-commitment occurs, the con-
tent of releases is modified or end-delivery dates are changed.

As development work proceeds, the customer can add stories, change the value
of an existing story, split stories, or eliminate them. The XP team then reconsiders all
remaining releases and modifies its plans accordingly.

a discipline of software development based on values of simplicy

Design. XP design rigorously follows the KIS (keep it simple) principle. A simple de-
sign is always preferred over a more complex representation. In addition, the design
provides implementation guidance for a story as it is written—nothing less, nothing
more. The design of extra functionality (because the developer assumes it will be re-
quired later) is discouraged.®

XP encourages the use of CRC cards (Chapter 8) as an effective mechanism for
thinking about the software in an object-oriented context. CRC (class-responsibility
collaborator) cards identify and organize the object-oriented classes’ that are rele-
vant to the current software increment. The XP team conducts the design exercise
using a process similar to the one described in Chapter 8 (Section 8.7.4). The CRC
cards are the only design work product produced as part of the XP process.

6 These design guidelines should be followed in every software engineering method, although there
are times when sophisticated design notation and terminology may get in the way of simplicity.
7 Object-oriented classes are discussed in detail in Chapter 8 and throughout Part 2 of this book.

12

WebRef

WebRef

What is
pair
programming?

PART ONE THE SOFTWARE PROCESS

If a difficult design problem is encountered as part of the design of a story, XP rec-
ommends the immediate creation of an operational prototype of that portion of the
design. Called a spike solution, the design prototype is implemented and evaluated.
The intent is to lower risk when true implementation starts and to validate the orig-
inal estimates for the story containing the design problem.

XP encourages refactoring—a construction technique that is also a design tech-
nique. Fowler [FOWO00] describes refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves the internal structure. It is a disci-
plined way to clean up code [and modify/simplify the internal design| that minimizes the
chances of introducing bugs. In essence, when you refactor you are improving the design
of the code after it has been written.

Because XP design uses virtually no notation and produces few, if any work products
other than CRC cards and spike solutions, design is viewed as a transient artifact that
can and should be continually modified as construction proceeds. The intent of
refactoring is to control these modifications by suggesting small design changes that
“can radically improve the design” [FOWO0Q]. It should be noted, however, that effort
required for refactoring can grow dramatically as the size of an application grows.

A central notion in XP is that design occurs both before and after coding com-
mences. Refactoring means that design occurs continuously as the system is con-
structed. In fact, the construction activity itself will provide the XP team with
guidance on how to improve the design.

Coding. XP recommends that after stories are developed and preliminary design
work is done, the team should not move to code, but rather develop a series of unit
tests that will exercise each of the stories that is to be included in the current release
(software increment).® Once the unit test has been created, the developer is better
able to focus on what must be implemented to pass the unit test. Nothing extrane-
ous it added (KIS). Once the code is complete, it can be unit tested immediately,
thereby providing instantaneous feedback to the developers.

A key concept during the coding activity (and one of the most talked about aspects
of XP) is pair programming. XP recommends that two people work together at one
computer workstation to create code for a story. This provides a mechanism for real-
time problem solving (two heads are often better than one) and real-time quality as-
surance. It also keeps the developers focused on the problem at hand. In practice,
each person takes on a slightly different role. For example, one person might think
about the coding details of a particular portion of the design while the other ensures
that coding standards (a required part of XP) are being followed and the code that is
generated will “fit” into the broader design for the story.

8 This approach is analogous to knowing the exam questions before you begin to study. It makes
studying much easier by focusing attention only on the questions that will be asked.

[/
LY

POINT

XP acceptance tests
are derived from user
stories.

CHAPTER 4 AGILE DEVELOPMENT 13

As pair programmers complete their work, the code they develop is integrated with
the work of others. In some cases this is performed on a daily basis by an integration
team. In other cases, the pair programmers have integration responsibility. This “con-
tinuous integration” strategy helps to avoid compatibility and interfacing problems and
provides a “smoke testing environment (Chapter 13) that helps to uncover errors early.

Testing. We have already noted that the creation of a unit test® before coding
commences is a key element of the XP approach. The unit tests that are created
should be implemented using a framework that enables them to be automated
(hence, they can be executed easily and repeatedly). This encourages a regression
testing strategy (Chapter 13) whenever code is modified (which is often, given the XP
refactoring philosophy).

As the individual unit tests are organized into a “universal testing suite” [WEL99],
integration and validation testing of the system can occur on a daily basis. This pro-
vides the XP team with a continual indication of progress and also can raise warn-
ing flags early if things are going awry. Wells [WEL99] states: “Fixing small problems
every few hours takes less time than fixing huge problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and
focus on overall system features and functionality that are visible and reviewable by
the customer. Acceptance tests are derived from user stories that have been imple-
mented as part of a software release.

SAFE HOME

9 Unit testing, discussed in detail in Chapter 13, focuses on an individual software component, exer-
cising the component's interface, data structures, and functionality in an effort to uncover errors
that are local to the component.

14 PART ONE THE SOFTWARE PROCESS

4.3.2 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith [HIGOO)]
as a technique for building complex software and systems. The philosophical un-
derpinnings of ASD focus on human collaboration and team self-organization. High-
smith [HIG98] discusses this when he writes:

Self-organization is a property of complex adaptive systems similar to a collective “aha,”
that moment of creative energy when the solution to some nagging problem emerges.
Self-organization arises when individual, independent agents (cells in a body, species in
an ecosystem, developers in a feature team) cooperate [collaborate] to create emergent
outcomes. An emergent outcome is a property beyond the capability of any individual
agent. For example, individual neurons in the brain do not possess consciousness, but
collectively the property of consciousness emerges. We tend to view this phenomena of
collective emergence as accidental, or at least unruly and undependable. The study of
self-organization is proving that view to be wrong.

Highsmith argues that an agile, adaptive development approach based on collabo-
ration is “as much a source of order in our complex interactions as discipline and en-
gineering.” He defines an ASD “life cycle” (Figure 4.2) that incorporates three phases:
speculation, collaboration, and learning.

WebRef

Speculation. During speculation, the project is initiated and adaptive cycle planning
is conducted. Adaptive cycle planning uses project initiation information—the cus-
tomer’s mission statement, project constraints (e.g., delivery dates or user descrip-
tions), and basic requirements—to define the set of release cycles (software

