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Preface

It is a pleasure for me to acknowledge the help which I have
received during the preparation of this book. A preliminary
draft of the manuscript was read by Dr R. J. Wilson, and his
detailed comments resulted in substantial changes and improve-
ments. I was then fortunate to be able to rely upon the expert
assistance of my wife for the production of a typescript. Ideas
and helpful criticisms were offered by several friends and col-
leagues, among them G. de Barra, R.M. Damerell, A.D.
Gardiner, R. K. Guy, P. McMullen and J. W. Moon. The general
editor of the Cambridge Mathematical Tracts, Professor C. T. (.
Wall, was swift and perceptive in his appraisal, and his com-
ments were much appreciated. The staff of the Cambridge
University Press maintained their usual high standard of
courtesy and efficiency throughout the process of publication.
During the months January—April 1973, when the final stages
of the writing were completed, I held a visiting appointment at
the University of Waterloo, and my thanks are due to Professor
W.T. Tutte for arranging this. In addition, I owe a mathe-
matical debt to Professor Tutte, for he is the author of the two
results, Theorems 13.9 and 18.6, which I regard as the most
important in the book. I should venture the opinion that, were
it not for his pioneering work, these results would still be
unknown to this day.
NORMAN BIGGS
Waterloo, Canada

March 1973
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1. Introduction

This book is concerned with the use of algebraic techniques in
the study of graphs. We aim to translate properties of graphs into
algebraic properties and then, using the results and methods of
algebra, to deduce theorems about graphs.

The exposition which we shall give is not part of the modern
functorial approach to topology, despite the claims of those who
hold that, since graphs are one-dimensional spaces, graph theory
is merely one-dimensional topology. By that definition, algebraic
graph theory would consist only of the homology of 1-complexes.
But the problems dealt with in graph theory are more delicate
than those which form the substance of algebraic topology, and
even if these problems can be generalized to dimensions greater
than one, there is usually no hope of a general solution at the
present time. Consequently, the algebra used in algebraic graph
theory is largely unrelated to the subject which has come to be
known as homological algebra.

This book is not an introduction to graph theory. It would be
to the reader’s advantage if he were familiar with the basic con-
cepts of the subject, for example, as they are set out in the book
by R.J. Wilson entitled Introduction to graph theory. However,
for the convenience of those readers who do not have this back-
ground, we give brief explanations of important standard terms.
These explanations are usually accompanied by a reference to
Wilson's book (in the form [W), p. 99]), where further details may
be found. In the same way, some concepts from permutation-
group theory are accompanied by a reference [B, p.99] to the
author’s book Finite groups of automorphisms. Both these books
are described fully at the end of this chapter.

A few other books are also referred to for results which may be
unfamiliar to some readers. In such cases, the result required is’
necessary for an understanding of the topic under discussion, so
that the reference is given in full, enclosed in square brackets,
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2 Introduction

where it is needed. Other references, of a supplementary nature,
are given in parentheses in the form (Smith 1971) or Smith (1971).
In such cases, the full reference may be found in the bibliography
at the end of the book.

The tract is in three parts, each of which is further subdivided
into a number of short chapters. Within each chapter, the major
definitions and results are labelled using the decimal system.

The first part deals with the applications of linear algebra and
matrix theory to the study of graphs. We begin by introducing
the adjacency matrix of a graph; this matrix completely deter-
mines the graph, and its spectral properties are shown to- be
related to properties of the graph. For example, if a graph is
regular, then the eigenvalues of its adjacency matrix are bounded
in absolute value by the valency of the graph. In the case of a line
graph, there is a strong lower bound for the eigenvalues.

Another matrix which completely describes a graph is the
incidence matrix of the graph. This matrix represents a linear
mapping which, in modern language, determines the homology
of the graph; however, the sophistication of this language
obscures the underlying simplicity of the situation. The problem
of choosing a basis for the homology of a graph is just that of
finding a fundamental system of circuits, and we solve this
problem by using a spanning tree in the graph. At the same time
we study the cutsets of the graph. These ideas are then applied to
the systematic solution of network equations, a topic which
supplied the stimulus for the original theoretical development.

We then investigate various formulae for the number of span-
ning trees in a graph, and apply these formulae to several well-
known families of graphs. The first part of the book ends with
results which are derived from the expansion of certain deter-
. minants, and which illuminate the relationship between a graph
and the characteristic polynomial of its adjacency matrix.

The second part of the book deals with the problem of colouring
the vertices of a graph in such a way that adjacent vertices have
different colours. The least number of colours for which such a
colouring is possible is called the chromatic number of the graph,
and we begin by investigating some connections between this
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number and the eigenvalues of the adjacency matrix of the
graph.

The algebraic technique for counting the colourings of a graph
is founded on a polynomial known as the chromatic polynomial.
We first discuss some simple ways of calculating this polynomial,
and show how these can be applied in several important cases.
Many important properties of the chromatic polynomial of a
graph stem from its connection with the family of subgraphs of
the graph, and we show how the chromatic polynomial can be
expanded in terms of subgraphs. From our first (additive) expan-
sion another (multiplicative) expansion can be derived, and the
latter depends upon a very restricted class of subgraphs. This
leads to efficient methods for approximating the chromatic
polynomials of large graphs.

A completely different kind of expansion relates the chromatic
polynomial to the spanning trees of a graph; this expansion has
several remarkable features and leads to new ways of looking at
the colouring problem, and some new properties of chromatic
polynomials.

The third part of the book is concerned with symmetry and
regularity properties. A symmetry property of a graph is related
to the existence of automorphisms—that is, permutations of the
vertices which preserve adjacency. A regularity property is
defined in purely numerical terms. Consequently, symmetry
properties induce regularity properties, but the converse is not
necessarily true.

We first study the elementary properties of automorphisms,
and explain the connection between the automorphisms of a
graph and the eigenvalues of its adjacency matrix. We then intro-
duce a hierarchy of symmetry conditions which can be imposed
on a graph, and proceed to investigate their consequences. The
condition that all vertices be alike (under the action of the group
of automorphisms) turns out to be rather a weak one, but a slight
strengthening of it leads to highly non-trivial conclusions. In fact,
under certain conditions, there is an absolute bound to the level
of symmetry which a graph can possess.

A new kind of symmetry property, called distance-transitivity,
and the consequent regularity property, called distance-

I-2



4 Introduction

regularity, are then introduced. We return to the methods of
linear algebra to derive strong constraints upon the existence of
graphs with these properties. Finally, these constraints are
applied to the problem of finding minimal regular graphs whose
valency and girth are given.

At the end of each chapter there are some supplementary
results and examples, labelled by the number of the chapter and
a letter (as, for example, 9A). The reader is warned that these
results are variable in difficulty and in kind. Their presence
allows the inclusion of a great deal of material which would
otherwise have interrupted the mainstream of the exposition, or
would have had to be omitted altogether.

We end this introductory chapter by describing the few ways in
which we differ from the terminology of Wilson’s book.

In this book, a general graph I' consists of three things: a finite
set VI of vertices, a finite set ET" of edges, and an incidence relation
between vertices and edges. If v is a vertex, e is an edge, and (v, e)
is a pair in the incidence relation, then we say that v is incident
with e, and e is incident with v. Each edge is incident with either
one vertex (in which case it is a loop) or two vertices.

If each edge is incident with two vertices, and no two edges are
incident with the same pair of vertices, then we say that I'is a
simple graph or briefly, a graph. In this case, ET" can be identified
with a subset of the set of (unordered) pairs of vertices, and we
shall always assume that this identification has been made. We
shall deal mainly with graphs (that is, simple graphs), except in
Part Two, where it is sometimes essential to consider general
graphs.

If v and w are vertices of a graph I', and e = {v,w} is an edge
of I, then we say that e joins v and w, and that v and w are the
ends of e. The number of edges of which v is an end is called the
valency of v.

We consider two kinds of subgraph of a general graph I'. An
edge-subgraph of T" is constructed by taking a subset S of ET'
together with all vertices of I' incident in I" with some edge
belonging to S. A wvertex-subgraph of T"is constructed by taking
a subset U of VI together with all edges of I" which are incident
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in I" only with vertices belonging to U. In both cases the incidence
relation in the subgraph is inherited from the incidence relation
in T'. We shall use the notation {(S)p, (U ) for these subgraphs,
and usually, when the context is clear, the subscript reference
to I" will be omitted.

Further new terminology and notation will be defined when it
is required.

Basic references
R.J. Wilson. Introduction to graph theory (Oliver and.Boyd,
Edinburgh, 1972).
N.L. Biggs. Finite groups of automorphisms, London Math.
Society Lecture Notes Series, No. 6 (Cambridge University
Press, 1971).






PART ONE

Linear algebra in graph theory






2. The spectrum of a graph

We begin by defining a matrix which will play an important role
in many parts of this book. We shall suppose that I is a graph
whose vertex-set VI'is the set {v;,v,,...,v,}; as explained in
Chapter 1, we shall take ET" to be a subset of the set of unordered
pairs of elements of VT If {v;,v;} is an edge, then we say that v;
and v; are adjacent.

DEeriNiTiON 2.1 The adjacency matriz of I" is the nxn
matrix A = A(T'), over the complex field, whose entries a,; are
given by

a. — 1 if »; and v; are adjacent;
710 otherwise.

It follows directly from the definition that A is a real symmetric
matrix, and that the trace of A is zero. Since the rows and
columns of A correspond to an arbitrary labelling of the vertices
of T, it is clear that we shall be interested primarily in those
properties of the adjacency matrix which are invariant under
permutations of the rows and columns. Foremost among such
properties are the spectral properties of A.

Suppose that A is an eigenvalue of A. Then, since A is real and
symmetric, A is real, and the multiplicity of A as a root of the
characteristic equation det (A — A) = 0is equal to the dimension
of the space of eigenvectors corresponding to A.

DeriniTiON 2.2 The spectrum of a graph I' is the set of
numbers which are eigenvalues of A(I'), together with their
multiplicities as eigenvalues of A(I"). If the distinct eigenvalues
of A(I') are A, > A; > ... > A,_;, and their multiplicities are
m(Ag), m(Ay), ..., m(A,_;), then we shall write

" /\D /‘1 /\s—l )
Spec I' = (m(ao) mA) .. mAy))
[9]
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For example, the complete graph K, has n vertices, and each
distinet pair are adjacent [W, p. 16]. Thus, the graph K, has
adjacency matrix

0 1 1 1
A=|1 0 1t 1}

11 0 1

1 1 1 0

and an easy calculation shows that the spectrum of K, is:
. 3 —1
Spec K, = ( 1 3) .

We shall often refer to the eigenvalues of A(T") as the eigen-
values of I'. Also, the characteristic polynomial of A(T") will be
denoted by x(I'; A), and referred to as the characteristic poly-
nomial of I.

Let us suppose that the characteristic polynomial of I is

X(T3A) = A% 4 e An1 4 An—2 4 ¢ A3 4 e,

Then the coefficients c; can be interpreted as sums of principal
minors of A, and this leads to the following simple result.

ProrosiTIiON 2.3 Using the notation given above, we have :

(1) ¢=0;
(2) —c, 18 the number of edges of I';
(3) —cg 18 twice the number of triangles in T'.

Proof Foreachie{l,2,...,n}, the number (— 1)ic; is the sum
of those principal minors of A which have ¢ rows and columns.
Thus:

(1) Since the diagonal elements of A are all zero, ¢; = 0.

(2) A principal minor with two rows and columns, and which
has a non-zero entry, must be of the form

0 1
1ol
There is one such minor for each pair of adjacent vertices of I,
and each has value — 1. Hence (—1)%c, = —|ET|, giving the
result.
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(3) There are essentially three possibilities for non-trivial
principal minors with three rows and columns:

0 1 0 01 0 1 1
t 0o of, |1 o of |1 0 1],
0 0 0 1 0 0 110

and, of these, the only non-zero one is the last (whose value is 2).
This principal minor corresponds to three mutually adjacent
vertices in I, and so we have the required description of ¢,. [

These elementary results indicate that the characteristic poly-
nomial of a graph is a typical object of the kind one considers in
algebraic theory: it is an algebraic construction which contains
graphical information. Proposition 2.3 is just a pointer, and we
shall obtain a more comprehensive result on the coefficients of
the characteristic polynomial in Chapter 7.

Suppose A is the adjacency matrix of a graph I". Then the set
of polynomials in A, with complex coefficients, forms an algebra
uncder the usual matrix operations. This algebra has finite
dimension as a complex vector space.

DerFiNiTION 2.4 The adjacency algebra of a graph I'is the
algebra of polynomials in the adjacency matrix A = A(I"). We
shall denote the adjacency algebra of I' by .o7(I").

Since every element of the adjacency algebra is a linear combina-
tion of powers of A, we can obtain results about .«Z(I") from a
study of these powers. We define a walk of length Zin I', joining »;
to v;, to be a finite sequence of vertices of T,

v,

i

= Ugs Uyy oeny Uy = V),

such that u,_, and », are adjacent for 1 <t < 1. (If u;_, and
are distinet, 1 <¢ </—1, then we say that the walk is a
path.)

LemMma 2.5  The number of walks of length L in 1", joining v; to
v, 18 the entry in position (i, j) of the matriz Al.



