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Preface

Many years ago, I had my first opportunity to teach a graduate course on ordinary
differential equations at UC, Santa Barbara. Not being a specialist, I sought advice
and suggestions from others. In so doing, I had the good fortune of consulting with
Manoussos Grillakis, who generously offered to share his lovely notes from John
Mallet-Paret’s graduate course at Brown University. These notes, combined with
some of my own home cooking and spiced with ingredients from other sources,
evolved over numerous iterations into the current monograph.

In publishing this work, my goal is to provide a mathematically rigorous
introduction to the beautiful subject of ordinary differential equations to beginning
graduate or advanced undergraduate students. I assume that students have a solid
background in analysis and linear algebra. The presentation emphasizes commonly
used techniques without necessarily striving for completeness or for the treatment
of a large number of topics. I would half-jokingly subtitle this work as “ODE, as
told by an analyst.”

The first half of the book is devoted to the development of the basic theory:
linear systems, existence and uniqueness of solutions to the initial value problem,
flows, stability, and smooth dependence of solutions upon initial conditions and
parameters. Much of this theory also serves as the paradigm for evolutionary
partial differential equations. The second half of the book is devoted to geometric
theory: topological conjugacy, invariant manifolds, existence and stability of
periodic solutions, bifurcations, normal forms, and the existence of transverse
homoclinic points and their link to chaotic dynamics. A common thread
throughout the second part is the use of the implicit function theorem in Banach
space. Chapter 5, devoted to this topic, serves as the bridge between the two halves
of the book.

A few features (or peculiarities) of the presentation include:

— a characterization of the stable, unstable, and center subspaces of a linear
operator in terms of its exponential,

— a proof of smooth dependence using the implicit function theorem,

— a simple proof of the Hartman-Grobman theorem by my colleague, Michael
Crandall,

— treatment of the Hopf bifurcation using both normal forms and the Liapunov-
Schmidt method,
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viii Preface

— a treatment of orbital stability of periodic orbits using the Liapunov-Schmidt
method, and

— a complete proof of the existence of transverse homoclinic points for periodic
perturbations of Newton’s Equation.

I am most grateful to Prof. Grillakis for sharing his notes with me, and I thank
both Profs. Grillakis and Mallet-Paret for their consent to publish my interpretation
of them. I also thank Prof. Michel Chipot, the Series Editor, for encouraging me to
publish this monograph.

Santa Barbara, July 2013 Thomas C. Sideris
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Chapter 1
Introduction

The most general nth order ordinary differential equation (ODE) has the form
Ft,y,y,....y™) =0,

where F is a continuous function from some open set 2 C R”*2 into R. An n times
continuously differentiable real-valued function y(¢) is a solution on an interval / if

F@t,y®),y'®),....y™@) =0, tel.

A necessary condition for existence of a solution is the existence of points p =
(t, Y1,y Ynt+1) € R"*2 such that F(p) = 0. For example, the equation

)P+ +1=0

has no (real) solutions, because F(p) = y% + y]2 + 1 = 0 has no real solutions.

If F(p) = 0and 33’;[ (p) # 0, then locally we can solve for y, 4 in terms of the

other variables by the implicit function theorem

Yn+1 =G, Y15 0005 Yn),
and so locally we can write our ODE as
y® =G@, y,y,...,y" ).

This equation can, in turn, be written as a first order system by introducing addi-
tional unknowns. Setting

xi=y, x2=y, ..., xg=y® D,

T. C. Sideris, Ordinary Differential Equations and Dynamical Systems, 1
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2 I Introduction

we have that

7 ’ /

X =X2, X9 = X3y seus Xy =Xns Xy = G, X015 < ¢ 5 Xn):

Therefore, if we define n-vectors

x| X2
X = f(t.x)=
Xn—1 Xn
Xiy Gl Xl s« n o Xii—la Xig)

we obtain the equivalent first order system
x'= f(,x). (1.1)

The point of this discussion is that there is no loss of generality in studying the
first order system (1.1), where f(z, x) is a continuous function (at least) defined on
some open region in R+

A fundamental question that we will address is the existence and uniqueness of
solutions to the initial value problem (IVP)

x'= f(t.x), x(t9) = xo,
for points (g, xp) in the domain of f(z, x). We will then proceed to study the
qualitative behavior of such solutions, including periodicity, asymptotic behavior,
invariant structures, etc.
In the case where f(t,x) = f(x) is independent of f, the system is called
autonomous. Every first order system can be rewritten as an autonomous one by
introducing an extra unknown. If

=1, 22=X1, «..y Tnt+l = Xy,

then from (1.1) we obtain the equivalent autonomous system

o e |
2 =g(z). g(z)= [f(Z):l .

Suppose that f(x) is a continuous map from an open set U C R” into R”. We
can regard a solution x(¢) of an autonomous system

£ = fix), (1.2)

as a curve in R". This gives us a geometric interpretation of (1.2). If the vector
x'(r) # 0. then it is tangent to the solution curve at x(r). The Eq. (1.2) tells us what
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the value of this tangent vector must be, namely, f(x(¢)). So if there is one and only
one solution through each point of U, we know just from the Eq.(1.2) its tangent
direction at every point of U. For this reason, f(x) is called a vector field or direction
fieldon U.

The collection of all solution curves in U is called the phase diagram of f(x).
If f # 0in U, then locally, the curves are parallel. Near a point xg € U where
f(x0) = 0, the picture becomes more interesting.

A point xg € U such that f(xp) = 0 is called, interchangably, a critical point, a
stationary point, or an equilibrium point of f.If xo € U is an equilibrium point of
f, then by direct substitution, x(t) = xo is a solution of (1.2). Such solutions are
referred to as equilibrium or stationary solutions.

To understand the phase diagram near an equilibrium point we are going to attempt
to approximate solutions of (1.2) by solutions of an associated linearized system.
Suppose that xq is an equilibrium point of f.If f € C'(U), then Taylor expansion
about xp yields

f(x) = Df(xo)(x — xo),

when x — xg is small. The linearized system near xg is
vy = Ay, A= Df(xg).
An important goal is to understand when y is a good approximation to x — xg.
Linear systems are simple, and this is the benefit of replacing a nonlinear system by

a linearized system near a critical point. For this reason, our first topic will be the
study of linear systems.
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