Kin- Slle Yang

2nd Edition

INTRODUCTION TO
Computational
Mathematics

[
_e World Scientific

2nd Edition

INTRODUCTION TO
Computational
Mathematics

i - ._ ‘; ..‘..-‘ v’,;] y
Kin-She Vang o 4410
Middlesex University fJondopgfK N e

& :'{f’ .

\\’g World Scientific

NEW JERSEY « LONDON « SINGAPORE + BEIJING « SHANGHAI « HONG KONG =« TAIPEl « CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Yang, Xin-She.
Introduction to computational mathematics / by Xin-She Yang (Middlesex University London,
UK). -- 2nd edition,
pages cm
Includes bibliographical references and index.
ISBN 978-9814635776 (hardcover : alk. paper) -- ISBN 978-9814635783 (pbk. : alk. paper)
1. Numerical analysis. 2. Algorithms. 3. Mathematical analysis--Foundations. 4. Programming
(Mathematics) I. Title.
QA297.Y36 2015
518--dc23
2014038711

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2015 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher:

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

Printed in Singapore by B & Jo Enterprise Pte Ltd

Preface

Computational mathematics is essentially the foundation of modern scien-
tific computing. Traditional ways of doing sciences consist of two major
paradigms: by theory and by experiment. With the steady increase in
computer power, there emerges a third paradigm of doing sciences: by
computer simulation. Numerical algorithms are the very essence of any
computer simulation, and computational mathematics is just the science of
developing and analyzing numerical algorithms.

The science that studies numerical algorithms is numerical analysis or
more broadly computational mathematics. Loosely speaking, numerical
algorithms and analysis should include four categories of algorithms: nu-
merical linear algebra, numerical optimization, numerical solutions of dif-
ferential equations (ODEs and PDEs) and stochastic data modelling.

Many numerical algorithms were developed well before the computer
was invented. For example, Newton’s method for finding roots of nonlinear
equations was developed in 1669, and Gauss quadrature for numerical in-
tegration was formulated in 1814. However, their true power and efficiency
have been demonstrated again and again in modern scientific computing.
Since the invention of the modern computer in the 1940s, many numerical
algorithms have been developed since the 1950s. As the speed of com-
puters increases, together with the increase in the efficiency of numerical
algorithms, a diverse range of complex and challenging problems in math-
ematics, science and engineering can nowadays be solved numerically to
very high accuracy. Numerical algorithms have become more important
than ever.

The topics of computational mathematics are broad and the related
literature is vast. It is often a daunting task for beginners to find the
right book(s) and to learn the right algorithms that are widely used in

vi Introduction to Computational Mathematics

computational mathematics. Even for lecturers and educators, it is no
trivial task to decide what algorithms to teach and to provide balanced
coverage of a wide range of topics, because there are so many algorithms
to choose from.

The first edition of this book was published by World Scientific Publish-
ing in 2008 and it was well received. Many universities courses used it as
a main reference. Constructive feedbacks and helpful comments have also
been received from the readers. This second edition has incorporated all
these comments and consequently includes more algorithms and new algo-
rithms to reflect the state-of-the-art developments such as computational
intelligence and swarm intelligence.

Therefore, this new edition strives to provide extensive coverage of
efficient algorithms commonly used in computational mathematics and
modern scientific computing. It covers all the major topics including
root-finding algorithms, numerical integration, interpolation, linear algebra,
eigenvalues, numerical methods of ordinary differential equations (ODEs)
and partial differential equations (PDEs), finite difference methods, finite
element methods, finite volume methods, algorithm complexity, optimiza-
tion, mathematical programming, stochastic models such as least squares
and regression, machine learning such as neural networks and support vec-
tor machine, computational intelligence and swarm intelligence such as
cuckoo search, bat algorithm, firefly algorithm as well as particle swarm
optimization.

The book covers both traditional methods and new algorithms with
dozens of worked examples to demonstrate how these algorithms work.
Thus, this book can be used as a textbook and /or reference book, especially
suitable for undergraduates and graduates in computational mathematics,
engineering, computer science, computational intelligence, data science and
scientific computing.

Xin-She Yang

London, 2014

Contents

Preface

I Mathematical Foundations

1. Mathematical Foundations

1.1 The Essence of an Algorithm
1.2 Big-O Notations

1.3 Differentiation and Integration
1.4 Vector and Vector Calculus
1.5 Matrices and Matrix Decomposition
1.6 Determinant and Inverse
1.7 Matrix Exponential

1.8 Hermitian and Quadratic Forms
1.9 Eigenvalues and Eigenvectors
1.10 Definiteness of Matrices

2. Algorithmic Complexity, Norms and Convexity

2.1 Computational Complexity
2.2 NP-Complete Problems
2.3 Vector and Matrix Norms
2.4 Distribution of Eigenvalues
2.5 Spectral Radius of Matrices
2.6 Hessian Matrix,
27 Convexity s oo wiwwsm 5 68 53 85§56 688G EE S E S

vii

W w

S

10
15
20
24
26
28
31

viii

11

(@)]

Introduction to Computational Mathematics

Ordinary Differential Equations

3.1 Ordinary Differential Equations
3.2 First-Order ODEs
3.3 Higher-Order ODEs
34 Linear Systemttt i b e e
3.5 Sturm-Liouville Equation

Partial Differential Equations

4.1 Partial Differential Equations
4.1.1 First-Order Partial Differential Equation
4.1.2 Classification of Second-Order Equations
4.2 Mathematical Models,
4.2.1 Parabolic Equation
4.2.2 Poisson’s Equation
423 Wave Equation
4.3 Solution Techniques
4.3.1 Separation of Variables
4.3.2 Laplace Transform
4.3.3 Similarity Solution oL

Numerical Algorithms

Roots of Nonlinear Equations

5.1 Bisection Method
5.2 Simple Iterations Lo

53 Newton’s Method
5.4 Tteration Methods
5.5 Numerical Oscillations and Chaos

Numerical Integration

6.1 Trapezium Rule
6.2 Simpson’sRule 0.
6.3 Gaussian Integration

Computational Linear Algebra

7.1 System of Linear Equations
7.2 Gauss Elimination

51

51
52
53
56
58

59

59
60
61
61
61
61
62
64
65
67
68

71

73

73
75
76
78
81

Contents

73 LU Factorization . . « ¢ « « & s 55 o 5 6 66w oo ww o s s
7.4 Iteration Methods
7.4.1 Jacobi Iteration Method
7.4.2 Gauss-Seidel Iteration
7.4.3 Relaxation Method
7.5 Newton-Raphson Method
7.6 QR Decomposition
7.7 Conjugate Gradient Method

Interpolation

8.1 Spline Interpolation.

8.1.1 Linear Spline Functions
8.1.2 Cubic Spline Functions
8.2 Lagrange Interpolating Polynomials
8.3 Bézier Curve

ITI Numerical Methods of PDEs

9.

10.

11.

Finite Difference Methods for ODEs

9.1 Imtegrationof ODEs
9.2 Euler Scheme
9.3 Leap-FrogMethodo,
9.4 Runge-Kutta Method
9.5 Shooting Methods,

Finite Difference Methods for PDEs

10.1 Hyperbolic Equations.
10.2 Parabolic EQUation . . . « « o « v s oo s s 6 5 5 5 4 4
10.3 Elliptical Equation
10.4 Spectral Methods
10.5 Pattern Formation
10.6 Cellular Automata

Finite Volume Method

11.1 Concept of the Finite Volume
11.2 Elliptic Equations,
11.3 Parabolic Equations
11.4 Hyperbolic Equations

ix

101
103
103
107
108
109
110
115

117

117
117
118
123
125

127

129
129
130
131
132
134

139
139
142
143
146
148
150

12.

Introduction to Computational Mathematics

Finite Element Method

12.1 Finite Element Formulation
12.1.1 Weak Formulation
12.1.2 Galerkin Method
12.1.3 Shape Functions

12.2 Derivatives and Integration
12.2.1 Derivatives ¢ v v v v e e e e
12.2.2 Gauss Quadrature

12.3 Poisson’s Equation

12.4 Transient Problems

IV Mathematical Programming

13.

14.

Mathematical Optimization

13.1 Optimization
13.2 Optimality Criteria,
13.3 Unconstrained Optimization
13.3.1 Univariate Functions
13.3.2 Multivariate Functions
13.4 Gradient-Based Methods
13.4.1 Newton’s Method
13.4.2 Steepest Descent Method

Mathematical Programming

14.1 Linear Programming
14.2 Simplex Method
14.2.1 Basic Procedure
14.2.2 Augmented Form
1423 ACaseStudy
14.3 Nonlinear Programming
14.4 Penalty Method
14.5 Lagrange Multipliers
14.6 Karush-Kuhn-Tucker Conditions
14.7 Sequential Quadratic Programming
14.7.1 Quadratic Programming
14.7.2 Sequential Quadratic Programming
14.8 No Free Lunch Theorems

157

157
157
158
159
163
163
164
165
169

171

173

173
175
177
177
178
180
181
182

Contents

V Stochastic Methods and Data Modelling

15.

16.

17.

Stochastic Models

15.1 Random Variables
15.2 Binomial and Poisson Distributions
15.3 Gaussian Distribution
15.4 Other Distributions
15.5 The Central Limit Theorem
15.6 Weibull Distribution

Data Modelling

16.1 Sample Mean and Variance
16.2 Method of Least Squares
16.2.1 Maximum Likelihood
16.2.2 Linear Regression
16.3 Correlation Coefficient
16.4 Linearization
16.5 Generalized Linear Regression
16.6 Nonlinear Regression
16.7 Hypothesis Testing
16.7.1 Confidence Interval
16.7.2 Student’s t-Distribution
16.7.3 Student’s t-Test

Data Mining, Neural Networks and Support Vector Machine

17.1 Clustering Methods
17.1.1 Hierarchy Clustering
17.1.2 k-Means Clustering Method

17.2 Artificial Neural Networks
17.2.1 Artificial Neuron
17.2.2 Artificial Neural Networks
17.2.3 Back Propagation Algorithm

17.3 Support Vector Machine
17.3.1 Classifications
17.3.2 Statistical Learning Theory
17.3.3 Linear Support Vector Machine
17.3.4 Kernel Functions and Nonlinear SVM

xi

205

207

207
209
211
213
215
216

221

221
223
223
223
226
227
229
233
237
237
238
240

xii Introduction to Computational Mathematics

18. Random Number Generators and Monte Carlo Method 259
18.1 Linear Congruential Algorithms 259
18.2 Uniform Distribution 260
18.3 Generation of Other Distributions 262
18.4 Metropolis Algorithms 266
18.5 Monte Carlo Methods 267
18.6 Monte Carlo Integration 270
18.7 Importance of Sampling 273
18.8 Quasi-Monte Carlo Methods 275
18.9 Quasi-Random Numbers 276

VI Computational Intelligence 279

19. Evolutionary Computation 281
19.1 Introduction to Evolutionary Computation. 281
19.2 Simulated Annealing 282
19.3 Genetic Algorithms 286

19.3.1 Basic Procedure 287
19.3.2 Choice of Parameters 289
19.4 Differential Evolution. 291

20. Swarm Intelligence 295
20.1 Introduction to Swarm Intelligence 295
20.2 Ant and Bee Algorithms 296
20.3 Particle Swarm Optimization 297
204 Accelerated PSO 299
20.5 Binary PSO 301

21. Swarm Intelligence: New Algorithms 303
21.1 Firefly Algorithm 303
21.2 Cuckoo Search 306
21.3 Bat Algorithm 310
214 Flower Algorithm 313
21.5 Other Algorithms 317

Bibltography 319

Index 325

Part 1

Mathematical Foundations

Chapter 1

Mathematical Foundations

Computational mathematics concerns a wide range of topics, from basic
root-finding algorithms and linear algebra to advanced numerical methods
for partial differential equations and nonlinear mathematical programming.
In order to introduce various algorithms, we first review some mathematical
foundations briefly.

1.1 The Essence of an Algorithm

Let us start by asking: what is an algorithm? In essence, an algorithm is
a step-by-step procedure of providing calculations or instructions. Many
algorithms are iterative. The actual steps and procedures will depend on
the algorithm used and the context of interest. However, in this book,
we place more emphasis on iterative procedures and ways for constructing
algorithms.

For example, a simple algorithm of finding the square root of any posi-
tive number £ > 0, or x = \/E, can be written as

1 k
Tn+1 = §($n =2 —)1 (11)

n
starting from a guess solution xy # 0, say, xo = 1. Here, n is the iteration
counter or index, also called the psendo-time or generation counter. The
above iterative equation comes from the re-arrangement of z? = k in the
following form

T k
- - 1.2
2 2x (1.2)
which can be rewritten as
1 k
r==(z+~). 1.
T 2(1‘—1— x) (1.3)

4 Introduction to Computational Mathematics

For example, for k = 7 with 2o = 1, we have

1 . 1, 7T
z1==(@o+—)==(1+=)=4. 1.4
n =zl +)= 501+ 7) (14)
1 7 ‘
vy = 5(ay + =) = 2875, 3 ~ 2654801304, (1.5)
1
24~ 2.645767044, x5 ~ 2.6457513111. (1.6)

We can see that x5 after just 5 iterations (or generations) is very close to
the true value of /7 = 2.64575131106459..., which shows that this iteration
method is very efficient.
The reason that this iterative process works is that the series
Ty, T2, ..., Ty, converges to the true value vk due to the fact that
Zovt 1o Ry L1 s VR, (1.7)
Ty 2 2
as n — oo. However, a good choice of the initial value x¢ will speed up
the convergence. A wrong choice of xy could make the iteration fail; for
example, we cannot use zg = 0 as the initial guess, and we cannot use
20 < 0 either as vk > 0 (in this case, the iterations will approach another
root —vk). So a sensible choice should be an educated guess. At the
initial step, if 2 < k, zo is the lower bound and k/z¢ is upper bound. If
a3 > k, then zg is the upper bound and k/xz is the lower bound. For other
iterations, the new bounds will be x,, and k/z,. In fact, the value x,41
is always between these two bounds x, and k/x,, and the new estimate
Ty 1s thus the mean or average of the two bounds. This guarantees that
the series converges to the true value of vk. This method is similar to the
well-known bisection method.
You may have already wondered why 22 = k was converted to Eq. (1.1)?
Why do not we write it as the following iterative formula:
o= o, (18)
starting from z¢o = 17 With this and & = 7, we have
T =l =T, :1:2:—7— =1, z3=7 x4=1, z25=7, .. (1.9
Io €T
which leads to an oscillating feature at two distinct stages 1 and 7. You
may wonder that it may be the problem of initial value zg. In fact, for any
initial value xg # 0, this above formula will lead to the oscillations between
two values: zg and k. This clearly demonstrates that the way to design a
good iterative formula is very important.

Mathematical Foundations 5

Mathematically speaking, an algorithm A is a procedure to generate a
new and better solution x,,; to a given problem from the current solution
Ty at iteration or time t. That is,

Tn+1 = A(xn)’ (110)

where A is a mathematical function of x,,. In fact, A can be a set of
mathematical equations in general. In some literature, especially those
in numerical analysis, n is often used for the iteration index. In many
textbooks, the upper index form z("*1) or z"*! is commonly used. Here,
™! does not mean x to the power of n 4+ 1. Such notations will become
useful and no confusion will occur when used appropriately. We will use
such notations when appropriate in this book.

1.2 Big-O Notations

In analyzing the complexity of an algorithm, we usually estimate the order
of computational efforts in terms of its problem size. This often requires
the order notations, often in terms of big O and small o.
Loosely speaking, for two functions f(z) and g(z), if
f(z)

Jim S o K, (1.11)

where K is a finite, non-zero limit, we write

f=0(g). (1.12)

The big O notation means that f is asymptotically equivalent to the order
of g(x). If the limit is unity or K = 1, we say f(x) is order of g(z). In this
special case, we write

f~y (1.13)

which is equivalent to f/g — 1 and g/f — 1 as @ — xy. Obviously, xq
can be any value, including 0 and co. The notation ~ does not necessarily
mean ~ in general, though it may give the same results, especially in the
case when x — 0. For example, sinz ~ z and sinz ~ z if x — 0.

When we say f is order of 100 (or f ~ 100), this does not mean f = 100,
but it can mean that f could be between about 50 and 150. The small o
notation is often used if the limit tends to 0. That is

lim S — 0, (1.14)

Tr—rTg g

6 Introduction to Computational Mathematics

or

f=o(g). (1.15)

If g > 0, f = o0(g) is equivalent to f < g. For example, for Vo € R, we
have
’ z?
eCxl+z+0@?)=1l+z+ 5 + o(x).

Example 1.1: A classic ezample is Stirling’s asymptotic series for facto-
rials
1 1 139

n
I~/ —)"(1+ — - — ..
" amm (e) L4 12n " 28802 514803)

which can demonstrate the fundamental difference between an asymptotic
series and the standard approzimate erpansions. For the standard power
expansions, the error Rg(h*) — 0, but for an asymptotic series, the error
of the truncated series Ry decreases compared with the leading term [here
V2rn(n/e)"]. However, R, does not necessarily tend to zero. In fact,

=T Vv2mn(n/e)"”,

is still very large as Ry — oo if n > 1. For example, for n = 100, we have
n! = 9.3326 x 10'%7, while the leading approzimation is v/2mn(n/e)" =
9.3248 x 10'°7. The difference between these two values is 7.7740 x 10174,
which is still very large, though three orders smaller than the leading ap-
prozimation.

Ry

1.3 Differentiation and Integration

Differentiation is essentially to find the gradient of a function. For any
curve y = f(x), we define the gradient as

oy W o @) S f@)
dx dr h—0 h

The gradient is also called the first derivative. The three notations f’(z),
dy/dx and df(x)/dz are interchangeable. Conventionally, the notation
dy/dz is called Leibnitz’s notation, while the prime notation ' is called
Lagrange’s notation. Newton’s dot notation y = dy/dt is now exclusively
used for time derivatives. The choice of such notations is purely for clarity,
convention and/or personal preference.

(1.16)

