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Preface

Computational mathematics is essentially the foundation of modern scien-
tific computing. Traditional ways of doing sciences consist of two major
paradigms: by theory and by experiment. With the steady increase in
computer power, there emerges a third paradigm of doing sciences: by
computer simulation. Numerical algorithms are the very essence of any
computer simulation, and computational mathematics is just the science of
developing and analyzing numerical algorithms.

The science that studies numerical algorithms is numerical analysis or
more broadly computational mathematics. Loosely speaking, numerical
algorithms and analysis should include four categories of algorithms: nu-
merical linear algebra, numerical optimization, numerical solutions of dif-
ferential equations (ODEs and PDEs) and stochastic data modelling.

Many numerical algorithms were developed well before the computer
was invented. For example, Newton’s method for finding roots of nonlinear
equations was developed in 1669, and Gauss quadrature for numerical in-
tegration was formulated in 1814. However, their true power and efficiency
have been demonstrated again and again in modern scientific computing.
Since the invention of the modern computer in the 1940s, many numerical
algorithms have been developed since the 1950s. As the speed of com-
puters increases, together with the increase in the efficiency of numerical
algorithms, a diverse range of complex and challenging problems in math-
ematics, science and engineering can nowadays be solved numerically to
very high accuracy. Numerical algorithms have become more important
than ever.

The topics of computational mathematics are broad and the related
literature is vast. It is often a daunting task for beginners to find the
right book(s) and to learn the right algorithms that are widely used in
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computational mathematics. Even for lecturers and educators, it is no
trivial task to decide what algorithms to teach and to provide balanced
coverage of a wide range of topics, because there are so many algorithms
to choose from.

The first edition of this book was published by World Scientific Publish-
ing in 2008 and it was well received. Many universities courses used it as
a main reference. Constructive feedbacks and helpful comments have also
been received from the readers. This second edition has incorporated all
these comments and consequently includes more algorithms and new algo-
rithms to reflect the state-of-the-art developments such as computational
intelligence and swarm intelligence.

Therefore, this new edition strives to provide extensive coverage of
efficient algorithms commonly used in computational mathematics and
modern scientific computing. It covers all the major topics including
root-finding algorithms, numerical integration, interpolation, linear algebra,
eigenvalues, numerical methods of ordinary differential equations (ODEs)
and partial differential equations (PDEs), finite difference methods, finite
element methods, finite volume methods, algorithm complexity, optimiza-
tion, mathematical programming, stochastic models such as least squares
and regression, machine learning such as neural networks and support vec-
tor machine, computational intelligence and swarm intelligence such as
cuckoo search, bat algorithm, firefly algorithm as well as particle swarm
optimization.

The book covers both traditional methods and new algorithms with
dozens of worked examples to demonstrate how these algorithms work.
Thus, this book can be used as a textbook and /or reference book, especially
suitable for undergraduates and graduates in computational mathematics,
engineering, computer science, computational intelligence, data science and
scientific computing.

Xin-She Yang

London, 2014
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Chapter 1

Mathematical Foundations

Computational mathematics concerns a wide range of topics, from basic
root-finding algorithms and linear algebra to advanced numerical methods
for partial differential equations and nonlinear mathematical programming.
In order to introduce various algorithms, we first review some mathematical
foundations briefly.

1.1 The Essence of an Algorithm

Let us start by asking: what is an algorithm? In essence, an algorithm is
a step-by-step procedure of providing calculations or instructions. Many
algorithms are iterative. The actual steps and procedures will depend on
the algorithm used and the context of interest. However, in this book,
we place more emphasis on iterative procedures and ways for constructing
algorithms.

For example, a simple algorithm of finding the square root of any posi-
tive number £ > 0, or x = \/E, can be written as

1 k
Tn+1 = §($n =2 —)1 (11)

n
starting from a guess solution xy # 0, say, xo = 1. Here, n is the iteration
counter or index, also called the psendo-time or generation counter. The
above iterative equation comes from the re-arrangement of z? = k in the
following form

T k
- - 1.2
2 2x (1.2)
which can be rewritten as
1 k
r==(z+~). 1.
T 2(1‘—1— x) (1.3)
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For example, for k = 7 with 2o = 1, we have

1 . 1, 7T
z1==(@o+—)==(1+=)=4. 1.4
n =zl + )= 501+ 7) (14)
1 7 ‘
vy = 5(ay + =) = 2875, 3 ~ 2654801304, (1.5)
1
24~ 2.645767044, x5 ~ 2.6457513111. (1.6)

We can see that x5 after just 5 iterations (or generations) is very close to
the true value of /7 = 2.64575131106459..., which shows that this iteration
method is very efficient.
The reason that this iterative process works is that the series
Ty, T2, ..., Ty, converges to the true value vk due to the fact that
Zovt 1o Ry L1 s VR, (1.7)
Ty 2 2
as n — oo. However, a good choice of the initial value x¢ will speed up
the convergence. A wrong choice of xy could make the iteration fail; for
example, we cannot use zg = 0 as the initial guess, and we cannot use
20 < 0 either as vk > 0 (in this case, the iterations will approach another
root —vk). So a sensible choice should be an educated guess. At the
initial step, if 2 < k, zo is the lower bound and k/z¢ is upper bound. If
a3 > k, then zg is the upper bound and k/xz is the lower bound. For other
iterations, the new bounds will be x,, and k/z,. In fact, the value x,41
is always between these two bounds x, and k/x,, and the new estimate
Ty 1s thus the mean or average of the two bounds. This guarantees that
the series converges to the true value of vk. This method is similar to the
well-known bisection method.
You may have already wondered why 22 = k was converted to Eq. (1.1)?
Why do not we write it as the following iterative formula:
o= o, (18)
starting from z¢o = 17 With this and & = 7, we have
T =l =T, :1:2:—7— =1, z3=7 x4=1, z25=7, .. (1.9
Io €T
which leads to an oscillating feature at two distinct stages 1 and 7. You
may wonder that it may be the problem of initial value zg. In fact, for any
initial value xg # 0, this above formula will lead to the oscillations between
two values: zg and k. This clearly demonstrates that the way to design a
good iterative formula is very important.
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Mathematically speaking, an algorithm A is a procedure to generate a
new and better solution x,,; to a given problem from the current solution
Ty at iteration or time t. That is,

Tn+1 = A(xn)’ (110)

where A is a mathematical function of x,,. In fact, A can be a set of
mathematical equations in general. In some literature, especially those
in numerical analysis, n is often used for the iteration index. In many
textbooks, the upper index form z("*1) or z"*! is commonly used. Here,
™! does not mean x to the power of n 4+ 1. Such notations will become
useful and no confusion will occur when used appropriately. We will use
such notations when appropriate in this book.

1.2 Big-O Notations

In analyzing the complexity of an algorithm, we usually estimate the order
of computational efforts in terms of its problem size. This often requires
the order notations, often in terms of big O and small o.
Loosely speaking, for two functions f(z) and g(z), if
f(z)

Jim S o K, (1.11)

where K is a finite, non-zero limit, we write

f=0(g). (1.12)

The big O notation means that f is asymptotically equivalent to the order
of g(x). If the limit is unity or K = 1, we say f(x) is order of g(z). In this
special case, we write

f~y (1.13)

which is equivalent to f/g — 1 and g/f — 1 as @ — xy. Obviously, xq
can be any value, including 0 and co. The notation ~ does not necessarily
mean ~ in general, though it may give the same results, especially in the
case when x — 0. For example, sinz ~ z and sinz ~ z if x — 0.

When we say f is order of 100 (or f ~ 100), this does not mean f = 100,
but it can mean that f could be between about 50 and 150. The small o
notation is often used if the limit tends to 0. That is

lim S — 0, (1.14)

Tr—rTg g
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or

f=o(g). (1.15)

If g > 0, f = o0(g) is equivalent to f < g. For example, for Vo € R, we
have
’ z?
eCxl+z+0@?)=1l+z+ 5 + o(x).

Example 1.1: A classic ezample is Stirling’s asymptotic series for facto-
rials
1 1 139

n
I~/ —)"(1+ — - — ..
" amm (e) L4 12n " 28802 514803 )

which can demonstrate the fundamental difference between an asymptotic
series and the standard approzimate erpansions. For the standard power
expansions, the error Rg(h*) — 0, but for an asymptotic series, the error
of the truncated series Ry decreases compared with the leading term [here
V2rn(n/e)"]. However, R, does not necessarily tend to zero. In fact,

=T Vv2mn(n/e)"”,

is still very large as Ry — oo if n > 1. For example, for n = 100, we have
n! = 9.3326 x 10'%7, while the leading approzimation is v/2mn(n/e)" =
9.3248 x 10'°7. The difference between these two values is 7.7740 x 10174,
which is still very large, though three orders smaller than the leading ap-
prozimation.

Ry

1.3 Differentiation and Integration

Differentiation is essentially to find the gradient of a function. For any
curve y = f(x), we define the gradient as

oy W o @) S f@)
dx dr h—0 h

The gradient is also called the first derivative. The three notations f’(z),
dy/dx and df(x)/dz are interchangeable. Conventionally, the notation
dy/dz is called Leibnitz’s notation, while the prime notation ' is called
Lagrange’s notation. Newton’s dot notation y = dy/dt is now exclusively
used for time derivatives. The choice of such notations is purely for clarity,
convention and/or personal preference.

(1.16)



