O'REILLY"

Cookboo

ClojureZZ B2 3£41 (2EnkR)

% & KF HERit Luke VanderHart, Ryan Neufeld Z&

ClojureZZ EL 3L 6] (wem
Clojure Cookbook

Luke VanderHart, Ryan Neufeld %

Beijing - Cambridge - Farnham - Kiin - Sebastopol - Tokyo K@NR{{|HNE

O’Reilly Media, Inc 44 # # K & t Bt JR

MR REAFHMRT

B R4 B (CIP)#iE

Clojure £ 8152 f5i] . $& SC /() f504 4 (Vander Hart,
L)L) 2 R (Neufeld, R)&. —LEIA. — R ot.
AR R AL, 2015.2

544 J50 3 : Clojure Cookbook

ISBN 978-7- 5641 - 53465

[.OC- 1.0fE- Qi . ORKFIE
5 Eaxit—3#:x N. OTP3I12

rp [A [i CIP B8 7 (2014) 55 273737 5

LA AR E R TR BAE

K7 10- 2014 - 149+

© 2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2015. Authorized reprint of the original English edition, 2014 O Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form
XL R pad O'Reilly Media, Inc.$ #& 2014,

ELHIPME RS KT HiRAE R 2015, PR B A4 € R3] kAR A B AR PT A &
O'Reilly Media, Inc.493F 7T .

WAET A RAF B @ik T A F 69 4EAT 36 5 Ao 230 RAF AT K E 4] .

Clojure 28BS 5] (RZEDRRD

R AT« AR R RF H .

Mo ke EEIPUEERE 25 Hl3£ht- 720096
O A T

M 4ik: http//www.seupress.com

oL 7154 . press@seupress.com

EjJ Wil T R A = BRI R A W)

FF A TBTEARXBOZEK 6 TR
£l i 29.75

? ﬁ: 5837'?

MR W 2015462 HE LR

EJ WK 2015 4F 2 A5 1 IKETRI

45 5. ISBN 978 - 7- 5641 - 53465

AR | P P 4 OB B B [B8 i B SRR R . S (A D) ¢ 025 - 83791830

Preface

The primary goal of this book is to provide mid-length examples of Clojure code that
go beyond the basics, with a focus on real-world, everyday applications (as opposed to
more conceptual or academic issues).

Unlike many of the other books on Clojure written to date, the organizing theme of this
book is not the language itself, or its features and capabilities. Instead, it focuses on
specific tasks that developers face (regardless of what language they’re using) and shows
an example of how to use Clojure to solve each of those specific problems.

As such, this book is not and cannot be truly comprehensive; there are infinite possible
example problems. However, we do hope we've documented some of the more common
ones that most programmers encounter frequently, and that by induction readers will
be able to learn some common patterns, approaches, and techniques that will serve them
well as they design solutions for their own unique problems.

How This Book Was Written

An important thing you should understand about this book is that it is, first and fore-
most, a group effort. It is not authored by one or two people. It isn’t even the work of a
single, well-defined group. Instead, it is the collaborative product of more than 60 of
the best Clojurists from all over the world, from all backgrounds. These authors use
Clojure every day on real applications, ranging from aerospace to social media, banking
to robotics, Al research to e-commerce.

As such, you will see a lot of diversity in the recipes presented. Some are quick and to
the point. Others are more deliberate, presenting digestible yet penetrating insights into
the philosophy and implementation of certain aspects of Clojure.

We hope that there is something in this book for readers of diverse interests. We believe
that it will be useful not only as a reference for looking up solutions to specific problems,
but also as a worthwhile survey of the variety and expressivity that Clojure is capable

of. As we edited submissions, we were astonished by the number of concepts and tech-
niques that were new to us, and will hopefully be new to our readers as well.

Something else that we discovered while writing and editing was how difficult it was to
draw a circumference around what we wanted to cover. Every single recipe is a beautiful,
endless fractal, touching multiple topics, each of which deserves a recipe, a chapter, or
a book of its own. But each recipe also needs to stand on its own. Each one should
provide some useful nugget of information that readers can understand and take away
with them.

We sincerely hope that we have balanced these goals appropriately, and that you find
this book useful without being tedious, and insightful without being pedantic.

Audience

Anyone who uses Clojure will, we hope, be able to get something out of this book. There
are a lot of recipes on truly basic things that beginners will find useful, but there are also
many recipes on more specialized topics that advanced users should find useful for
getting a head start on implementation.

That said, if you're completely new to Clojure, this probably isn’t the book to start with
—at least, not by itself. It covers a great many useful topics, but not as methodically or
as thoroughly as a good introductory text. See the following section for a list of general
Clojure books you may find useful as prior or supplemental texts.

Other Resources

One thing that this book is not, and could never be, is complete. There is too much to
cover, and by presenting information in a task-oriented recipe format we have inherently
precluded ourselves from methodical, narrative explanation of the features and capa-
bilities of the whole language.

For a more linear, thorough explanation of Clojure and its features, we recommend one
of the following books:

« Clojure Programming (O’Reilly, 2012), by Chas Emerick, Brian Carper, and Chris-
tophe Grand. A good, comprehensive, general-purpose Clojure book focusing on
the language and common tasks, oriented toward beginner Clojure programmers.

« Programming Clojure, 2nd ed. (Pragmatic Bookshelf, 2012), by Stuart Halloway and
Aaron Bedra. The first book on Clojure, this is a clear, comprehensive introductory
tutorial on the Clojure language.

« Practical Clojure (Apress, 2010), by Luke VanderHart and Stuart Sierra. This is a
terse, no-nonsense explanation of what Clojure is and what its features do.

x | Preface

o The Joy of Clojure (Manning, 2011), by Michael Fogus and Chris Houser. This is a
slightly more advanced text that really digs into the themes and philosophies of
Clojure.

« ClojureScript: Up and Running (O’Reilly, 2012), by Stuart Sierra and Luke Vander-
Hart. While Clojure Cookbook and the other Clojure books listed here focus mainly
or entirely on Clojure itself, ClojureScript (a dialect of Clojure that compiles to
JavaScript) has gained considerable uptake. This book introduces ClojureScript and
how to get started with it, and covers the similarities and differences between Clo-
jureScript and Clojure.

Finally, you should look at the source code for this book itself, which is freely available
on GitHub (http://bit.ly/clj-ckbk). The selection of recipes available online is larger than
that in the print version, and we are still accepting pull requests for new recipes that
might someday make it into a future edition of this book.

Structure

The chapters in this book are for the most part groupings of recipes by theme, rather
than strictly categorical. It is entirely possible for a recipe to be applicable to more than
one chapter—in these cases, we have simply tried to place it where we think the majority
of readers will likely look first.

A recipe consists of three primary parts and one secondary: problem, solution, discus-
sion, and “see also.” A recipe’s problem statement lays out a task or obstacle to be over-
come. Its solution tackles the problem head-on, illustrating a particular technique or
library that effectively accomplishes the task. The discussion rounds everything out,
exploring the solution and any caveats that may come with it. Finally, we tie off each
recipe with a “see also” section, pointing you, the reader, to any additional resources or
recipes that will assist you in enacting the described solution.

Chapter Listing

The book is composed of the following chapters:

o Chapter 1, Primitive Data, and Chapter 2, Composite Data, cover Clojure’s built-in
primitive and composite data structures, and explain many common (and less
common) ways one might want to use them.

« Chapter 3, General Computing, is a grab bag of useful topics that are generally
applicable in many different application areas and project domains, from Clojure
features such as Protocols to alternate programming paradigms such as logic pro-
gramming with core.logic or asynchronous coordination with core.async.

Preface | xi

o Chapter 4, Local 1/0, deals with all the ways in which your program can interact
with the local computer upon which it is running. This includes reading fromand
writing to standard input and output streams, creating and manipulating files, se-
rializing and deserializing files, etc.

« Chapter 5, Network 1I/O and Web Services, contains recipes with similar themes to
Chapter 4, Local I/O, but instead deals with remote communication over a network.
It includes recipes on a variety of network communication protocols and libraries.

« Chapter 6, Databases, demonstrates techniques and tools for connecting to and
using a variety of databases. Special attention is given to Datomic, a datastore that
shares and extends much of Clojure’s underlying philosophy of value, state, and
identity to persistent storage.

« Chapter 7, Web Applications, dives in-depth into one of the most common appli-
cations for Clojure: building and maintaining dynamic websites. It provides com-
prehensive treatment of Ring (the most popular HTTP server library for Clojure),
as well as tools for HTML templating and rendering.

« Chapter 8, Performance and Production, explains what to do with a Clojure program
once you have one, going over common patterns for packaging, distributing, profil-
ing, logging, and associated ongoing tasks over the lifetime of an application.

« Chapter9, Distributed Computation, focuses on cloud computing and using Clojure
for heavyweight distributed data crunching. Special attention is given to Cascalog,
a declarative Clojure interface to the Hadoop MapReduce framework.

« Last but not least, Chapter 10, Testing, covers a variety of techniques for ensuring
the integrity and correctness of your code and data, ranging from traditional unit
and integration tests to more comprehensive generative and simulation testing, and
even optional compile-time validations using static typing with core. typed.

Software Prerequisites

To follow along with the recipes in this book you will need valid installations of the Java
Development Kit (JDK) and Clojure’s de facto build tool, Leiningen. We recommend
version 7 of the JDK, but a minimum of 6 will do. For Leiningen, you should have at
least version 2.2.

If you don’t have Java installed (or would like to upgrade), visit the Java Download
" Page (http://bit.ly/java-download) for instructions on downloading and installing the
Java JDK.

To install Leiningen, follow the installation instructions on Leiningen’s website (http://
leiningen.org/). If you already have Leiningen installed, get the latest version by exe-

xii | Preface

cuting the command lein upgrade. If you aren’t familiar with Leiningen, visit the
tutorial (http://bit.ly/lein-tutorial) to learn more.

The one thing you won’t need to manually install is Clojure itself; Leiningen will do this
for you on an ad hoc basis. To verify your installation, run lein repl and check your
Clojure version:

$ lein repl

...

user=> *clojure-version*

{:major 1, :minor 5, :incremental 1, :qualifier nil}

Some recipes have accompanying online materials available on Git-
Hub. If you do not have Git installed on your system, follow the setup
instructions (https://help.github.com/articles/set-up-git) to enable you
to check out a GitHub repository locally.

Some recipes—such as the database recipes—require further software installations.
Where this is the case, recipes will include additional information on installing those
tools.

Conventions Used in This Book

Being a book full of solutions, you'll find no shortage of Clojure source code in this
book. Clojure source code appears in a monospace font, like this:

(defn add
[x y]
(+ xy))
When a Clojure expression is evaluated for a return value, that value is denoted with a
comment followed by an arrow, much like it would appear on the command line:

(add 1 2)

5i >3
Where appropriate, code samples may omit or ellipsize return value comments. The
two most common places you'll see this are when defining a function/var or shortening
lengthy output:

55 This would return #'user/one, but do you really care?
(def one 1)

(into [] (range 1 20))
;> [12 ... 20]

When an expression produces output to STDOUT or STDERR, it is denoted by a comment
(*out* or *error#*, respectively), followed by a comment with each line of output:

Preface | xiii

(do (println "Hello!")
(println "Goodbye!"))

53 -> nil

53 *out*

;; Hello!

;3 Goodbye!

REPL Sessions

Seeing that REPL-driven development is in vogue at present, it follows that this be a
REPL-driven book. REPLs (read-eval-print loops) are interactive prompts that evaluate
expressions and print their results. The Bash prompt, irb, and the python prompt are
examples of REPLs. Nearly every recipe in this book is designed to be run at a Clojure
REPL.

While Clojure REPLs are traditionally displayed as user=> ..., this book aims for
readers to be able to copy and paste all of the examples in a recipe and see the indicated
results. As such, samples omit user=> and comment out any output to make things
easier. This is especially helpful if you're following along on a computer: you can blindly
copy and paste code samples without worrying about trying to run noncode.

When an example is only relevant in the context of a REPL, we will retain the traditional
REPL style (with user=>). What follows is an example of each, a REPL-only sample and
its simplified version.

REPL-only:

user=> (+ 1 2)
3
user=> (println "Hello!")
Hello!
nil
Simplified:
(+12)
s >3
(println "Hello!")

33 *out*
33 Hello!

Console/Terminal Sessions

Console sessions (e.g., shell commands) are denoted by monospace font, with lines
beginning with a dollar sign ($) indicating a shell prompt. Output is printed without a
leading $:

$ lein version
Leiningen 2.0.0-previewl® on Java 1.6.0_29 Java HotSpot(TM) 64-Bit Server VM

xiv | Preface

A backslash (\) at the end of a command indicates to the console that the command
continues on the next line.

Our Golden Boy, lein-try

Clojure is not known for its extensive standard library. Unlike languages like Perl or
Ruby, Clojure’s standard library is comparatively small; Clojure chose simplicity and
power instead. As such, Clojure is a language full of libraries, not built-ins (well, except
for Java).

Since so many of the solutions in this book rely on third-party libraries, we developed
lein-try (https://github.com/rkneufeld/lein-try). lein-try is a small plug-in for Lei-
ningen (http://leiningen.org/), Clojure’s de facto project tool, that lets you quickly and
easily try out various Clojure libraries.

To use lein-try, ensure you have Leiningen installed, then edit your user profile

(~/.lein/profiles.clj) as follows:
{:user {:plugins [[lein-try "0.4.1"]]1}}

Now, inside of a project or out, you can use the lein try command to launch a REPL
with access to whichever library you please:

$ lein try clj-time

#o..

user=>
Long story short: where possible, you'll see instructions on which lein-try command
to execute above recipes that use third-party libraries. You'll find an example of trying
recipes with lein-try in Recipe 3.4, “Trying a Library Without Explicit Dependen-
cies” on page 128.

If a recipe cannot be run via lein-try, we have made efforts to include adequate in-
structions on how to run that recipe on your local machine.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic
Used for URLs, filenames, pathnames, and file extensions. New terms are also ita-
licized when they first appear in the text, and italics are used for emphasis.

Constant width
Used for function and method names and their arguments; for data types, classes,
and namespaces; in examples to show both input and output; and in regular text
to show literal code.

Preface | xv

Constant width bold
Used to indicate commands that you should enter literally at the command line.

<replaceable-value>
Elements of pathnames, commands, function names, etc. that should be replaced
with user-supplied values are shown in angle brackets.

The names of libraries follow one of two conventions: libraries with proper names are
displayed in plain text (e.g., “Hiccup” or “Swing”), while libraries with names meant to
mimic code symbols are displayed in constant-width text (e.g., core.async or clj-
Commons -exec).

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/clj-ckbk.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

xvi | Preface

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Clojure Cookbook by Luke VanderHart and
Ryan Neufeld (O’Reilly). Copyright 2014 Cognitect, Inc., 978-1-449-36617-9.

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

.. Safari Books Online is an on-demand digital library that
Safa Tl delivers expert content in both book and video form from
BooksOnline the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/clojure-ckbk.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Preface | xvii

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia or https://twitter.com/clojurecook

book

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the selfless contributions of many
within the Clojure community. Over 65 Clojurists rose to the occasion, submitting
recipes, proofreading, and offering their input on the direction of the book. Ultimately,
this is the community’s book—we’re just honored to have been able to help put it to-
gether. Those contributors are:

» Adam Bard, adambard (https://github.com/adambard) on GitHub

« Alan Busby, thebusby (https://github.com/thebusby) on GitHub

o Alex Miller, puredanger (https://github.com/puredanger) on GitHub

o Alex Petrov, ifesdjeen (https://github.com/ifesdjeen) on GitHub

« Alex Robbins, alexrobbins (https://github.com/alexrobbins) on GitHub

« Alex Vzorov, Orca (https://github.com/Orca) on GitHub

« Ambrose Bonnaire-Sergeant, frenchy64 (https://github.com/frenchy64) on GitHub
» arosequist (https://github.com/arosequist)

o Chris Allen, bitemyapp (https://github.com/bitemyapp) on GitHub

o Chris Ford, ctford (https://github.com/ctford) on GitHub

o Chris Frisz, cjfrisz (https://github.com/cjfrisz) on GitHub

« Clinton Begin, cbegin (https://github.com/cbegin) on GitHub

« Clinton Dreisbach, cndreisbach (https://github.com/cndreisbach) on GitHub
« Colin Jones, trptcolin (https://github.com/trptcolin) on GitHub

« Craig McDaniel, cpmcdaniel (https://github.com/cpmcdaniel) on GitHub

« Daemian Mack, daemianmack (https://github.com/daemianmack) on GitHub
« Dan Allen, mojavelinux (https://github.com/mojavelinux) on GitHub

« Daniel Gregoire, semperos (https://github.com/semperos) on GitHub

« Dmitri Sotnikov, yogthos (https://github.com/yogthos) on GitHub

« Edmund Jackson, ejackson (https://github.com/ejackson) on GitHub

xviii | Preface

Eric Normand, ericnormand (https://github.com/ericnormand) on GitHub
Federico Ramirez, gosukiwi (https://github.com/gosukiwi) on GitHub

Filippo Diotalevi, fdiotalevi (https://github.com/fdiotalevi) on GitHub
fredericksgary (https://github.com/fredericksgary)

Gabriel Horner, cldwalker (https://github.com/cldwalker) on GitHub

Gerrit, gerritjvv (https://github.com/gerritjvv) on GitHub

Guewen Baconnier, guewen (https://github.com/guewen) on GitHub

Hoang Minh Thing, myguidingstar (https://github.com/myguidingstar) on GitHub
Jason Webb, bigjason (https://github.com/bigjason) on GitHub

Jason Wolfe, wO1fe (https://github.com/w0lfe) on GitHub

Jean Niklas Lorange, hyPiRion (https://github.com/hyPiRion) on GitHub

Joey Yang, joeyyang (https://github.com/joeyyang) on GitHub

John Cromartie, jcromartie (https://github.com/jcromartie) on GitHub

John Jacobsen, eigenhombre (https://github.com/eigenhombre) on GitHub
John Touron, jwtouron (https://github.com/jwtouron) on GitHub

Joseph Wilk, josephwilk (https://github.com/josephwilk) on GitHub

jungziege (https://github.com/jungziege)

jwhitlark (https://github.com/jwhitlark)

Kevin Burnett, burnettk (https://github.com/burnettk) on GitHub

Kevin Lynagh, lynaghk (https://github.com/lynaghk) on GitHub

Lake Denman, ldenman (https://github.com/ldenman) on GitHub

Leonardo Borges, leonardoborges (https://github.com/leonardoborges) on GitHub
Mark Whelan, mrwhelan (https://github.com/mrwhelan) on GitHub

Martin Janiczek, Janiczek (https://github.com/Janiczek) on GitHub _
Matthew Maravillas, maravillas (https://github.com/maravillas) on GitHub
Michael Fogus, fogus (https://github.com/fogus) on GitHub

Michael Klishin, michaelklishin (https://github.com/michaelklishin) on GitHub
Michael Mullis, mmullis (https://github.com/mmullis) on GitHub

Michael O’Church, michaelochurch (https:/github.com/michaelochurch) on
GitHub

Mosciatti S., siscia (https://github.com/siscia) on GitHub
nbessi (https://github.com/nbessi)

Preface | xix

« Neil Laurance, toolkit (https://github.com/toolkit) on GitHub
o Nurullah Akkaya, nakkaya (https://github.com/nakkaya) on GitHub
« Osbert Feng, osbert (https://github.com/osbert) on GitHub

 Prathamesh Sonpatki, prathamesh-sonpatki (https://github.com/prathamesh) on
GitHub

o R.T. Lechow, rtlechow (https://github.com/rtlechow) on GitHub
« Ravindra R. Jaju, jaju (https://github.com/jaju) on GitHub

« Robert Stuttaford, robert-stuttaford (https://github.com/robert-stuttaford) on
GitHub

» Russ Olsen, russolsen (https://github.com/russolsen) on GitHub

« Ryan Senior, senior (https://github.com/senior) on GitHub

« Sam Umbach, sumbach (https://github.com/sumbach) on GitHub

« Sandeep Nangia, nangia (https://github.com/nangia) on GitHub

« Steve Miner, miner (https://github.com/miner) on GitHub

« Steven Proctor, stevenproctor (https://github.com/stevenproctor) on GitHub
« temacube (https://github.com/temacube)

« Tobias Bayer, codebrickie (https://github.com/codebrickie) on GitHub
« Tom White, dribnet (https://github.com/dribnet) on GitHub

« Travis Vachon, travis (https://github.com/travis) on GitHub

« Stefan Karlsson, zclj (https://github.com/zclj) on GitHub

Our biggest contributors also deserve special thanks: Adam Bard, Alan Busby, Alex
Robbins, Ambrose Bonnaire-Sergeant, Dmitri Sotnikov, John Cromartie, John Jacob-
sen, Robert Stuttaford, Stefan Karlsson, and Tom Hicks. All together, these outstanding
individuals contributed almost a third of the book’s recipes.

Thanks also to our technical reviewers, Alex Robbins, Travis Vachon, and Thomas
Hicks. These fine gentlemen scoured the book for technical errors in record time, in
the 11th hour no less. Where a regular technical reviewer would merely submit textual
descriptions of problems, these folks went above and beyond, often submitting pull
requests fixing the very errors they were reporting. All in all, they were a pleasure to
work with and the book is much better because of their involvement.

Finally, thanks to our employer, Cognitect, for giving us time to work on the book, and
to all of our colleagues who offered advice, feedback, and best of all, more recipes!

xx | Preface

Ryan Neufeld

First, a huge thanks to Luke. It was Luke who originally pitched the idea for the book,
and I'm very grateful that he extended an invitation for me to join him in authoring it.
They say the best way to learn something is to write a book on it—this couldn’t be any
closer to the truth. Working on the book has really rounded out my Clojure skills and
taken them to the next level.

And, most importantly, I have to thank my family for putting up with me through the
process of writing the book. Getting this thing off the ground has been a Herculean task
and I couldn’t have done it without the love and support of my wife Jackie and daughter
Elody. Ifit hadn’t been for the hundreds upon hundreds of hours of evenings, weekends,
and vacation time I usurped from them, I wouldn’t have been able to write this book.

Luke VanderHart

Most of all, I'd like to thank my coauthor Ryan, who worked incredibly hard to make
the book happen.

Also, all of my coworkers at Cognitect provided lots of thoughts and ideas, and most
importantly were a sounding board for the many questions that arose during the writing
and editing process. Many thanks for that, as well as for providing the opportunity to
write code in Clojure all day, every day.

Preface | xxi

AR, 7 B SEBEPDRIE U7 1A) : www. ertongbook. com

