NUMVMERICAL
RECIPES

Example Book [FORTRAN
Secohnd Edition

Wiliarm T. VVetterling Saul A. Teukolsky
William H. Press Brian B Flannery



Numerical Recipes
Example Book (FORTRAN)

Second Edition

William T. Vetterling

Polaroid Corporation

Saul A. Teukolsky
Department of Physics, Cornell University

William H. Press

Harvard-Smithsonian Center for Astrophysics

Brian P. Flannery
EXXON Research and Engineering Company

EH CAMBRIDGE

&P UNIVERSITY PRESS




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright © Cambridge University Press 1986, 1992
except for computer programs and procedures, which are
Copyright © Numerical Recipes Software 1986, 1992
All rights reserved

First edition originally published 1986
Second edition originally published 1992
Reprinted 1993 (twice), 1994, 1995, 1998

Printed in the United States of America
Typeset in TEX

The computer programs in this book are available, in
FORTRAN, in several machine-readable formats. There are
also versions of this book and its software available in C,
Pascal, and BASIC programming languages.

To purchase diskettes in IBM PC or Apple Macintosh
formats, use the order form at the back of the book or write
to Cambridge University Press, 110 Midland Avenue, Port
Chester, NY 10573.

Unlicenced transfer of Numerical Recipes programs from
the above-mentioned IBM PC or Apple Macintosh
diskettes to any other format or to any computer except a
single IBM PC or Apple Macintosh or compatible for each
diskette purchased, is strictly prohibited. Licenses for
authorized transfers to other computers are available from
Numerical Recipes Software, P.O. Box 243, Cambridge,
MA 12238 (FAX 617 863-1739). Technical questions,
corrections, and requests for information on other available
formats should be directed to this address.

Library of Congress Cataloging-in-Publication Data available.
A catalogue record for this book is available from the British Library.

ISBN 0-521-43721-0 Example book in FORTRAN (this book)
ISBN 0-521-43064-X Numerical Recipes in FORTRAN

ISBN 0-521-43717-2 FORTRAN diskette (IBM 5.25", 1.2M)
ISBN 0-521-43719-9 FORTRAN diskette (IBM 3.5", 720K)
ISBN 0-521-43716-4 FORTRAN diskette (Mac 3.5". 800K)



Preface

This Numerical Recipes Ezample Book (FORTRAN) is designed to accompany
the text and reference book Numerical Recipes in FORTRAN: The Art of Scien-
tific Computing, Second Edition, by William H. Press, Saul A. Teukolsky, William
T. Vetterling, and Brian P. Flannery (Cambridge University Press, 1992). In that
volume, the algorithms and methods of scientific computation are developed in con-
siderable detail, starting with basic mathematical analysis and working through to
actual implementation in the form of FORTRAN subroutines. The routines in Numer-
ical Recipes in FORTRAN: The Art of Scientific Computing, numbering more than
300, are meant to be incorporated into user applications; they are subroutines (or
functions), not stand-alone programs.

It often happens, when you want to incorporate somebody else’s procedure into
your own application program, that you first want to see the procedure demonstrated
on a simple example. Prose descriptions of how to use a procedure (even those in
Numerical Recipes) can occasionally be inexact. There is no substitute for an actual,
FORTRAN demonstration program that shows exactly how data are fed to a procedure,
how the procedure is called, and how its results are unloaded and interpreted.

Another not unusual case occurs when you have, for one seemingly good purpose
or another, modified the source code in a “foreign” procedure. In such circumstances,
you might well want to test the modified procedure on an example known previously
to have worked correctly, before letting it loose on your own data. There is the related
case where procedure source code may have become corrupted, e.g., lost some lines
or characters in transmission from one machine to another, and a simple revalidation
test is desirable.

These are the needs addressed by this Numerical Recipes Ezample Book. Divided
into chapters identically with Numerical Recipes in FORTRAN: The Art of Scientific
Computing, this book contains FORTRAN source programs that exercise and demon-
strate all of the Numerical Recipes subroutines and functions. The programs are
commented, and each is also prefaced by a short description of what it does, and of
which Numerical Recipes routines it exercises. In many cases where the demonstra-
tion programs require input data, that data is also printed in this book. In some
cases, where the demonstration programs are not “self-validating,” sample output is
also shown.

Necessarily, in the interests of clarity, the Numerical Recipes procedures and func-
tions are demonstrated in simple ways. A consequence is that the demonstration pro-
grams in this book do not usually test all possible regimes of input data, or even all
lines of procedure source code. The demonstration programs in this book were by no
means the only validating tests that the Numerical Recipes procedures and functions

Vit



were required to pass during their development. The programs in this book were used
during the later stages of the production of Numerical Recipes in FORTRAN: The
Art of Scientific Computing to maintain integrity of the source code, and in this role
were found to be invaluable.

DISCLAIMER OF WARRANTY

THE PROGRAMS LISTED IN THIS BOOK ARE PROVIDED “AS IS” WITHOUT WAR-
RANTY OF ANY KIND. WE MAKE NO WARRANTIES, EXPRESS OR IMPLIED, THAT
THE PROGRAMS CONTAINED IN THIS VOLUME ARE FREE OF ERROR, OR ARE CON-
SISTENT WITH ANY PARTICULAR STANDARD OF MERCHANTABILITY, OR THAT THEY
WILL MEET YOUR REQUIREMENTS FOR ANY PARTICULAR APPLICATION. THEY
SHOULD NOT BE RELIED ON FOR SOLVING A PROBLEM WHOSE INCORRECT SOLU-
TION COULD RESULT IN INJURY TO A PERSON OR LOSS OF PROPERTY. IF YOU
DO USE THE PROGRAMS IN SUCH A MANNER, IT IS AT YOUR OWN RISK. THE AU-
THORS AND PUBLISHER DISCLAIM ALL LIABILITY FOR DIRECT OR CONSEQUENTIAL
DAMAGES RESULTING FROM YOUR USE OF THE PROGRAMS.

Vil



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CONTENTS

Preface

Preliminaries

Solution of Linear Algebraic Equations
Interpolation and Extrapolation

Integration of Functions

Evaluation of Functions

Special Functions .

Random Numbers

Sorting

Root Finding and Nonlinear Sets of Equations
Minimization and Maximization of Functions
Eigensystems

Fast Fourier Transform

Fourier and Spectral Applications

Statistical Description of Data

Modeling of Data

Integration of Ordinary Differential Equations
Two Point Boundary Value Problems
Integral Equations and Inverse Theory
Partial Differential Equations
Less-Numerical Algorithms

Index of Demonstrated Subroutines

67

98

112

122

133

177

197

210

221

224

228

233

242



Chapter 1: Preliminaries

The routines in Chapter 1 of Numerical Recipes are introductory and less
general in purpose than those in the remainder of the book. This chapter’s
routines serve primarily to expose the book’s notational conventions, illustrate
control structures, and perhaps to amuse. You may even find them useful.
We hope that you will use badluk for no serious purpose.

* * *x %

Subroutine flmoon calculates the phases of the moon, or more exactly, the Julian
day and fraction thereof on which a given phase will occur or has occurred. The
program xflmoon asks the present date and compiles a list of upcoming phases. We
have compared the predictions to lunar tables, with happy results. Shown are the
results of a test run, which you may replicate as a check. In this program, notice
that we have set TZONE (the time zone) to —5.0 to signify the five hour separation of
the Eastern Standard time zone from Greenwich, England. Our convention requires
you to use negative values of TZONE if you are west of Greenwich, as we are. The
Julian day results are converted to calendar dates through the use of caldat, which
appears later in the chapter. The fractional Julian day and time zone combine to
form a correction that can possibly change the calendar date by one day.

Date Time (EST) Phase

12 9 1992 7 PM full moon

12 16 1992 2 PM last quarter
12 23 1992 8 PM new moon

12 31 1992 10 PM first quarter
1 8 1993 8 AM full moon

1 14 1993 11 PM last quarter
1 22 1993 1 PM new moon

1 30 1993 6 PM first quarter
2 6 1993 7 PM full moon

2 13 1993 10 AM last quarter
2 21 1993 8 AM new moon

3 11993 11 AM first quarter
3 8 1993 5 AM full moon

3 14 1993 11 PM last quarter
3 23 1993 2 AM new moon

3 30 1993 11 PM first quarter
4 6 1993 2 PM full moon

4 13 1993 3 PM last quarter
4 21 1993 6 PM new moon

4 29 1993 8 AM first quarter



2 Numerical Recipes Example Book

PROGRAM xflmoon
C driver for routine flmoon

REAL TZONE

PARAMETER (TZONE=-5.0)

REAL frac,timzon

INTEGER i,im,id,iy,ifrac,istr,j1,j2,julday,n,nph
CHARACTER phase(4)*15,timstr(2)*3

DATA phase/’new moon’,’first quarter’,
* ’full moon’,’last quarter’/

DATA timstr/’ AM’,’ PM’/

write(*,*) ’Date of the next few phases of the moon’
write(*,*) ’Enter today’’s date (e.g. 12,15,1992)’
timzon=TZONE/24.0

read(*,*) im,id,iy

C approximate number of full moons since January 1900
n=12.37%(iy-1900+(im-0.5)/12.0)
nph=2

ji=julday(im,id,iy)
call flmoon(n,nph,j2,frac)
n=n+nint ((j1-j2)/29.53)
write(*,’(/1x,t6,a,t19,a,t32,a)’) ’Date’,’Time(EST)’, ’Phase’
do 11 i=1,20
call flmoon(n,nph,j2,frac)
ifrac=nint(24.*(frac+timzon))
if (ifrac.lt.0) then
j2=j2-1
ifrac=ifrac+24
endif
if (ifrac.ge.12) then
j2=j2+1
ifrac=ifrac-12
else
ifrac=ifrac+12
endif
if (ifrac.gt.12) then
ifrac=ifrac-12
istr=2
else
istr=1
endif
call caldat(j2,im,id,iy)
write(*,’(1x,2i3,15,t20,i2,a,5x,a)’) im,id, iy,
* ifrac,timstr(istr),phase(nph+1)
if (nph.eq.3) then
nph=0
n=n+1
else
nph=nph+1
endif
11 continue
END

The function julday, our exemplar of the if control structure, converts calendar
dates to Julian dates. Not many people know the Julian date of their birthday or
any other convenient reference point, for that matter. To remedy this, we offer a list
of checkpoints, which appears at the end of this chapter as the file DATES.DAT. The



Chapter 1: Preliminaries 3

program xjulday lists the Julian date for each historic event for comparison. Then
it allows you to make your own choices for entertainment.

PROGRAM xjulday
C driver for julday
INTEGER i,im,id,iy,julday,n
CHARACTER txt#*40,name(12)*15
DATA name/’January’,’February’,’March’,’April’,’May’,’June’,
* ?July’,’August’,’September’, ’October’, ’November’,
* ’December’/
open(7,file="DATES.DAT’,,status=’0LD’)
read(7,’(a)’) txt
read(7,*) n
write(*,’(/1x,a,t12,a,t17,a,t23,a,t37,a/)’) ’Month’,’Day’,’Year’,
* ?Julian Day’,’Event’
do 11 i=1,n
read(7,’(i2,i3,i5,a)’) im,id,iy,txt
write(*,’(1x,a210,i3,i6,3x,i7,5x,a)’) name(im),id,iy,
* julday(im,id,iy),txt
11 continue
close(7)
write(*,’(/1x,a/)’) ’Month,Day,Year (e.g. 1,13,1905)’
do 12 i=1,20
write(*,%*) ’MM,DD,YYYY’
read(*,*) im,id,iy
if (im.1t.0) stop
write(*,’(1x,a12,i8/)’) ’Julian Day: ’,julday(im,id,iy)
12 continue
END

The next program in Numerical Recipes is badluk, an infamous code that com-
bines the best and worst instincts of man. We include no demonstration program for
badluk, not just because we fear it, but also because it is self-contained, with sample
results appearing in the text.

Chapter 1 closes with routine caldat, which illustrates no new points, but com-
plements julday by doing conversions from Julian day number to the month, day,
and year on which the given Julian day began. This offers an opportunity, grasped by
the demonstration program xcaldat, to push dates through both julday and caldat
in succession, to see if they survive intact. This, of course, tests only your authors’
ability to make mistakes backwards as well as forwards, but we hope you will share
our optimism that correct results here speak well for both routines. (We have checked
them a bit more carefully in other ways.)
PROGRAM xcaldat

c driver for routine caldat
INTEGER i,im,imm,id,idd,iy,iyy,iycopy,j,julday,n
CHARACTER name(12)*10

C check whether CALDAT properly undoes the operation of JULDAY
DATA name/’January’,’February’,’March’,’April’, ’May’,
* ’June’,’July’,’August’,’September’,’October’,
* ’November’ , 'December’/
open(7,file=’DATES.DAT’,status=’0LD’)
read(7,*)

read(7,*) n
write(*,’(/1x,a,t40,a)’) ’Original Date:’,’Reconstructed Date:’



4

Numerical Recipes Example Book

11

*

*

write(*,’(1x,a,t12,a,t17,a,t25,a,t40,a,t50,a,t55,a/)’)

’Month’,’Day’,’Year’,’Julian Day’, ’Month’,’Day’,’Year’

do 11 i=1,n
read(7,’(i2,13,1i5)’) im,id,iy
iycopy=iy
j=julday(im,id, iycopy)
call caldat(j,imm,idd,iyy)
write(*,’(1x,a,i3,i6,4x,i9,6x,a,13,i6)’) name(im),id,

iy, j,name(imm),idd,iyy

continue

END

Appendix

File DATES . DAT:

List of dates for testing routines in Chapter 1
entries

16
12
01
10
10
01
04
04
05
07
05
07
04
05
07
06
05

31
01
14
15
17
14
18
07
20
23
22
03
06
26
05
23

o |

1
1582
1582
1706
1865
1906
1915
1923
1934
1934
1936
1937
1956
1976
1968

End of millennium

One day later

Day before Gregorian calendar
Gregorian calendar adopted
Benjamin Franklin born
Abraham Lincoln shot

San Francisco earthquake
Sinking of the Lusitania
Pancho Villa assassinated
Bonnie and Clyde eliminated
John Dillinger shot

Bruno Hauptman electrocuted
Hindenburg disaster

Sinking of the Andrea Doria
Teton dam collapse

Julian Day 2440000



Chapter 2: Linear Algebraic Equations

Numerical Recipes Chapter 2 begins the “true grit” of numerical anal-
ysis by considering the solution of linear algebraic equations. This is done
first by Gauss-Jordan elimination (gaussj), and then by LU decomposition
with forward and backsubstitution (ludcmp and lubksb). Several linear sys-
tems of special form, represented by tridiagonal, band diagonal, cyclic, Van-
dermonde, and Toeplitz matrices, may be treated with subroutines tridag,
bandec, cyclic, vander, and toeplz respectively. Cholesky decomposition
(choldc and cholsl) is the preferred method for symmetric positive definite
systems. QR decomposition (qrdcmp) is less efficient than LU decomposition
in general; however, the ease with which it is updated (qrupdt) if the sys-
tem is changed slightly makes it useful in certain applications. For singular
or nearly singular matrices the best choice is singular value decomposition
with backsubstitution (svdcmp and svbksb). Linear systems with relatively
few non-zero coefficients, so-called “sparse” matrices, are handled by routine
linbcg. A suite of routines for manipulating general sparse matrices, sprsax,
sprstx, etc., is provided.

*x ok kK

gaussj performs Gauss-Jordan elimination with full pivoting to find the solution
of a set of linear equations for a collection of right-hand side vectors. The demon-
stration routine xgaussj checks its operation with reference to a group of test input
matrices printed at the end of this chapter as file MATRX1.DAT. Each matrix is sub-
jected to inversion by gaussj, and then multiplication by its own inverse to see that
a unit matrix is produced. Then the solution vectors are each checked through multi-
plication by the original matrix and comparison with the right-hand side vectors that

produced them.

10

PROGRAM xgaussj

driver for routine gaussj

INTEGER MP,NP

PARAMETER (MP=20,NP=20)

INTEGER j,k,1,m,n

REAL a(NP,NP),b(NP,MP),ai(NP,NP),x(NP,MP)
REAL u(NP,NP),t(NP,MP)

CHARACTER dummy*3
open(7,file=’MATRX1.DAT’,status=’0ld’)
read(7,’(a)’) dummy

if (dummy.eq.’END’) goto 99

read(7,*)

read(7,*) n,m

read(7,%*)



6 Numerical Recipes Example Book

read(7,*) ((a(k,1), 1=1,n), k=1,n)

read(7,*)
read(7,*) ((b(k,1), k=1,n), 1=1,m)
C save Matrices for later testing of results
do 13 1=1,n
do 11 k=1,n
ai(k,1)=a(k,1)
11 continue
do 12 k=1,m
x(1,k)=b(1,k)
12 continue
13 continue
C invert Matrix

call gaussj(ai,n,NP,x,m,MP)
write(*,*) ’Inverse of Matrix A :

do 14 k=1,n
write(*,’(1h ,(6£12.6))’) (ai(k,l), 1=1,n)
14 continue
C test Results
C check Inverse
write(*,*) ’A times A-inverse (compare with unit matrix)’
do 17 k=1,n
do 16 1=1,n
u(k,1)=0.0
do 15 j=1,n
u(k,1)=u(k,l)+a(k,j)*ai(j,1)
15 continue
16 continue
write(*,’(1h ,(6£12.6))’) (u(k,1), 1=1,n)
17 continue
C check Vector Solutions

write(*,*) ’Check the following vectors for equality:’
write(*,’(t12,a8,t23,a12)’) ’Original’,’Matrix*Sol’’n’
do 21 1=1,m
write(*,’(1x,a,i2,a)’) ’Vector ’,1,’:’
do 19 k=1,n
t(k,1)=0.0
do 18 j=1,n
t(k,1)=t(k,1)+a(k,j)*x(j,1)
18 continue
write(*,’(8x,2f12.6)’) b(k,1),t(k,1)
19 continue
21 continue
write(*,*) ) Jrogrogregey )
write(*,*) ’Press RETURN for next problem:’
read(*,*)
goto 10
929 close(7)
END

The demonstration program for routine ludcmp relies on the same package of
test matrices, but just performs an LU decomposition of each. The performance
is checked by multiplying the lower and upper matrices of the decomposition and
comparing with the original matrix. The array indx keeps track of the scrambling
done by ludcmp to effect partial pivoting. We had to do the unscrambling here, but
you will normally not be called upon to do so, since ludcmp is used with the routine



Chapter 2: Linear Algebraic Equations

lubksb, which knows how to do its own descrambling.

10

12
13

14
15
16

17

PROGRAM xludcmp
driver for routine ludcmp
INTEGER NP
PARAMETER (NP=20)
INTEGER j,k,1l,m,n,indx(NP), jndx(NP)
REAL d,dum,a(NP,NP),x1(NP,NP),xu(NP,NP),x(NP,NP)
CHARACTER txt*3
open(7,file=’MATRX1.DAT’ ,status=’o0ld’)
read(7,*)
read(7,%*)
read(7,*) n,m
read(7,*)
read(7,*) ((a(k,1), 1=1,n), k=1,n)
read(7,*)
read(7,*) ((x(k,1), k=1,n), 1=1,m)
print out a-matrix for comparison with product of lower
and upper decomposition matrices.
write(*,*) ’Original matrix:’
do 11 k=1,n
write(*,’(1x,6f12.6)’) (a(k,1), 1=1,n)
continue
perform the decomposition
call ludcmp(a,n,NP,indx,d)
compose separately the lower and upper matrices
do 13 k=1,n
do 12 1=1,n
if (1.gt.k) then
xu(k,l)=a(k,l)
x1(k,1)=0.0
else if (1.1t.k) then
xu(k,1)=0.0
x1(k,1)=a(k,1)
else
xu(k,1)=a(k,1)
x1(k,1)=1.0
endif
continue
continue
compute product of lower and upper matrices for
comparison with original matrix.
do 16 k=1,n
jndx (k) =k
do 15 1=1,n
x(k,1)=0.0
do 14 j=1,n
x(k,1)=x(k,1)+x1(k, j) *xu(j,1)
continue
continue
continue
write(*,*) ’Product of lower and upper matrices (unscrambled):’
do 17 k=1,n
dum=jndx(indx(k))
jndx(indx (k) )=jndx (k)
jndx (k) =dum
continue



8 Numerical Recipes Example Book
do 19 k=1,n
do 18 j=1,n
if (jndx(j).eq.k) then
write(*,’(1x,6f12.6)’) (x(j,1), 1=1,n)
endif
18 continue
19 continue
write(*,*) ’Lower matrix of the decomposition:’
do 21 k=1,n
write(*,’(1x,6f12.6)’) (x1(k,1), 1=1,n)
21 continue
write(*,*) ’Upper matrix of the decomposition:’
do 22 k=1,n
write(*,’(1x,6f12.6)’) (xu(k,1), 1=1,n)
22 continue

Write(, %) 7 kkskkkskkkokikkkokkskkkokkkkdkkkkkkkkk Kok )
write(*,*) ’Press RETURN for next problem:’
read(*,*)

read(7,’(a3)’) txt

if (txt.ne.’END’) goto 10

close(7)

END

Our example driver for lubksb makes calls to both ludcmp and lubksb in order
to solve the linear equation problems posed in file MATRX1.DAT (see discussion of
gaussj). The original matrix of coefficients is applied to the solution vectors to
check that the result matches the right-hand side vectors posed for each problem. We
apologize for using routine ludcmp in a test of lubksb, but ludcmp has been tested
independently, and anyway, lubksb is nothing without this partner program, so a

test of the combination is more to the point.

10

11
12

PROGRAM xlubksb
driver for routine lubksb
INTEGER NP
PARAMETER (NP=20)
REAL p,a(NP,NP),b(NP,NP),c(NP,NP),x(NP)
INTEGER j,k,1,m,n,indx(NP)
CHARACTER txt*3
open(7,file=’MATRX1.DAT’,status=’o0ld’)
read(7,*)
read(7,*)
read(7,*) n,m
read(7,*)
read(7,*) ((a(k,1), 1=1,n), k=1,n)
read(7,*)
read(7,*) ((b(k,1), k=1,n), 1=1,m)
save matrix a for later testing
do 12 1=1,n

do 11 k=1,n

c(k,l)=a(k,1)

continue
continue
do LU decomposition
call ludcmp(c,n,NP,indx,p)
solve equations for each right-hand vector
do 16 k=1,m



Chapter 2: Linear Algebraic Equations 9

do 13 1=1,n
x(1)=b(1,k)
13 continue
call lubksb(c,n,NP,indx,x)
c test results with original matrix

write(*,*) ’Right-hand side vector:’
write(*,’(1x,6£12.6)’) (b(1,k), 1=1,n)
write(*,*) ’Result of matrix applied to sol’’n vector’
do 15 1=1,n
b(1,k)=0.0
do 14 j=1,n
b(1,k)=b(1,k)+a(l1,j)*x(j)
14 continue
15 continue
write(*,’(1x,6f12.6)’) (b(1,k), 1=1,n)
Write(, %) 2 kskkskskskkkakkdokokkok koo kokkokkokkokkokkokkkkok )
16 continue
write(*,*) ’Press RETURN for next problem:’
read(*,*)
read(7,’(a3)’) txt
if (txt.ne.’END’) goto 10
close(7)
END

Subroutine tridag solves linear equations with coefficients that form a tridiag-
onal matrix. We provide at the end of this chapter a second file of matrices MA-
TRIX2.DAT for the demonstration driver. In all other respects, the demonstration
program xtridag operates in the same fashion as x1ubksb.

PROGRAM xtridag
c driver for routine tridag
INTEGER NP
PARAMETER (NP=20)
INTEGER k,n
REAL diag(NP),superd(NP),subd(NP),rhs(NP),u(NP)
CHARACTER txt*3
open(7,file=’MATRX2.DAT’,status="old’)
10 read(7,’(a3)’) txt
if (txt.eq.’END’) goto 99
read(7,*)
read(7,*) n
read(7,*)
read(7,*) (diag(k), k=1,n)
read(7,*)
read(7,*) (superd(k), k=1,n-1)
read(7,*)
read(7,*) (subd(k), k=2,n)
read(7,*)
read(7,*) (rhs(k), k=1,n)
c carry out solution
call tridag(subd,diag,superd,rhs,u,n)
write(*,*) ’The solution vector is:’
write(*,’(1x,6f12.6)’) (u(k), k=1,n)
Cc test solution
write(*,*) ’(matrix)*(sol’’n vector) should be:’
write(*,’(1x,6£12.6)’) (rhs(k), k=1,n)
write(*,*) ’Actual result is:’



10 Numerical Recipes Example Book

do 11 k=1,n
if (k.eq.1) then
rhs(k)=diag(1)*u(1) + superd(1)*u(2)
else if (k.eq.n) then
rhs(k)=subd(n)*u(n-1) + diag(n)*u(n)
else
rhs(k)=subd(k)*u(k-1) + diag(k)*u(k)
* + superd(k)*u(k+1)
endif
11 continue
write(*,’(1x,6f12.6)’) (rhs(k), k=1,n)
Write(, %) 2 kkskkkskskkkskkdkkdokkokskokkokdkkokok ok koo )
write(*,*) ’Press RETURN for next problem:’
read (*,*)
goto 10
99 close(7)
END

The demonstration program xbanmul forms a banded matrix, multiplies if by a
vector using banmul, and compares the answer to the result of carrying out a full
matrix multiplication.

PROGRAM xbanmul
(¢ driver for routine banmul

INTEGER NP,M1,M2,MP
PARAMETER (NP=7,M1=2,M2=1,MP=M1+1+M2)
INTEGER i,j,k
REAL a(NP,MP),aa(NP,NP),ax(NP),b(NP),x(NP)
do 12 i=1,M1

do 11 j=1,NP

a(j,i)=10*j+i

11 continue
12 continue
C lower band

do 13 i=1,NP
a(i,M1+1)=1i

13 continue
c diagonal
do 15 i=1,M2
do 14 j=1,NP
a(j,M1+1+i)=0.1%j+i
14 continue
15 continue
C upper band

do 17 i=1,NP
do 16 j=1,NP
k=i-M1-1
if (j.ge.max(1,1+k).and.j.le.min(M1+M2+1+k,NP)) then
aa(i,j)=a(i,j-k)
else
aa(i,j)=0.0
endif
16 continue
17 continue
do 18 i=1,NP
x(i)=i/10.0
18 continue



Chapter 2: Linear Algebraic Equations

11

19
21

22

call banmul(a,NP,M1,M2,NP,MP,x,b)
do 21 i=1,NP
ax(i)=0.0
do 19 j=1,NP
ax(i)=ax(i)+aa(i,j)*x(j)
continue
continue

write(*,’(t8,a,t32,a)’) ’Reference vector’,’banmul vector’

do 22 i=1,NP
write(*,’(t8,f12.4,t32,12.4)°)

continue

END

ax(i),b(i)

The sample program xbandec forms a random banded matrix A, a random vector

x, and calculates b = A - x. It then supplies A and b to bandec and banbks and
compares the solution to the saved copy of x.

11
12

13

14

PROGRAM xbandec
driver for routine bandec
REAL rani
REAL a(7,4),x(7),b(7),al(7,2),d
INTEGER indx(7)
INTEGER i,idum,j
idum=-1
do 12 i=1,7
x(i)=rani(idum)
do 11 j=1,4
a(i,j)=rani(idum)
continue
continue
call banmul(a,7,2,1,7,4,x,b)
do 13 i=1,7
write(*,*) i,b(i),x(i)
continue
call bandec(a,7,2,1,
call banbks(a,7,2,1,
do 14 i=1,7
write(*,*) i,b(i),x(i)
continue
stop
END

7,4,al,2,indx,d)
7,4,al,2,indx,b)

mprove is a short routine for improving the solution vector for a set of linear

equations, providing that an LU decomposition has been performed on the matrix
of coefficients. Our test of this function is to use ludcmp and lubksb to solve a set
of equations specified in the DATA statements at the beginning of the program. The
solution vector is then corrupted by the addition of random values to each component.
mprove works on the corrupted vector to recover the original.

PROGRAM xmprove

driver for routine mprove
INTEGER N,NP
PARAMETER(N=5,NP=5)
INTEGER i, j,idum,indx(N)

REAL d,a(NP,NP),b(N),x(N),aa(NP,NP),ran3
DATA a/1.0,2.0,1.0,4.0,5.0,2.0,3.0,1.0,5.0,1.0,



