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Learning is a shoreless sea; the learner’s days are few;
Prolonged study is beset with a thousand ills;
With clear discrimination learn what’s meet for you
Like swan that leaves the water, drinks the milk.



Preface

This book has grown out of an attempt to understand the role that the topology
of an electrical network plays in its efficient analysis. The approach taken is to
transform the problem of solving a network with a given topology, to that of solving
another with a different topology (and same devices), but with additional inputs
and constraints. An instance of this approach is network analysis by multiport de-
composition - breaking up a network into multiports, solving these in terms of port
variables and finally imposing the port connection conditions and getting the com-
plete solution. The motivation for our approach is that of building more efficient
circuit simulators, whether they are to run singly or in parallel. Some of the ideas
contained in the book have already been implemented - BITSIM, the general pur-
pose circuit simulator built at the VLSI Design Centre, I.1.T. Bombay, is based on
the ‘topological hybrid analysis’ contained in this book and can further be adapted
to use topological decomposition ideas.

Many combinatorial optimization problems arise naturally when one adopts the
above approach, particularly the hybrid rank problem and its generalizations. The
theory required for the solution of these problems was developed by electrical en-
gineers parallel to, and independent of, developments taking place in the theory of
matroids and submodular functions. Consider, for instance, the work of Kishi and
Kajitani, Iri, Ohtsuki et al in the late 60’s on principal partition and its applications,
independent of Edmonds’ work on matroid partitions (1965). There is a strong case
for electrical network topologists and submodular function theorists being aware of
each others’ fields. It is hoped that the present book would fill this need.

The topological network analysis that we have considered is to be distinguished
from the kind of work exemplified by ‘Kirchhoff’s Third Law’ which has been dis-
cussed in many books published in the 60’s (eg. the book by Seshu and Reed
[Seshu+Reed61]). In the 70’s much interesting work in this area was done by Iri,
Tomizawa, Recski and others using the ‘generality assumption’ for linear devices.
Details may be found, for instance, in Recski’s book [Recski89]. In the present book
devices play a very secondary role. Mostly we manipulate only Kirchhoff’s Laws.

Submodular functions are presented in this book adopting the ‘elementary com-
binatorial” as opposed to the ‘polyhedral’ approach. Three things made us decide
in favour of the former approach.
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e It is hoped that the book would be read by designers of VLSI algorithms. In
order to be convincing, the algorithms presented would have to be fast. So
very general algorithms based on the polyhedral approach are ruled out.

e The polyhedral approach is not very natural to the material on Dilworth
truncation.

e There is an excellent and comprehensive monograph, due to S.Fujishige, on
the polyhedral approach to submodular functions; a book on polyhedral com-
binatorics including submodular functions from A.Schrijver is long awaited.

In order to make the book useful to a wider audience, the material on electrical
networks and that on submodular functions are presented independently of each
other. A final chapter on the hybrid rank problem displays the link. An area which
can benefit by algorithms based on submodular functions is that of CAD for VLSI
- particularly for building partitioners. Some space has therefore been devoted to
partitioning in the chapter on Dilworth truncation.

The book is intended primarily for self study - hence the large number of prob-
lems with solutions. However, most of the material has been tested in the class
room. The network theory part has been used for many years for an elective course
on ‘Advanced Network Analysis’ - a third course on networks taken by senior un-
dergraduates at the EE Dept, I.I.T. Bombay. The submodular function part has
been used for special topics courses on combinatorics taken by doctoral students
in Maths and Computer Science. This material can be covered in a semester if the
students have a prior background in elementary graphs and matroids, leaving all
the starred sections and relegating details and problems to self study.

It is a pleasure to acknowledge the author’s indebtedness to his many colleagues,
teachers and friends and to express his heartfelt gratitude.

He was introduced to electrical network theory by Professors R.E.Bedford and
K.Shankar of the EE Dept., I.I.LT. Bombay, and to graph theory by Professor
M.N.Vartak of the Dept. of Maths, I.I.T. Bombay. Professor Masao Iri, formerly
of the University of Tokyo, now of the University of Chuo, has kept him abreast
of the developments in applied matroid theory during the last two decades and has
also generously spared time to comment on the viability of lines of research.

He has benefited through interaction with the following: Professors S.D.Agashe,
P.R.Bryant,A.N.Chandorkar,M.Chandramouli,C.A.Desoer,A.Diwan,S.Fujishige,
P.L.Hammer,M.V .Hariharan,Y.Kajitani,M.V. Kamath,M.S.Kamath,E.L.Lawler,
K.V.V. Murthy,T.Ozawa,S.Patkar,S.K.Pillai,P.G.Poonacha,G.N.Revankar,S.Roy,
S.C.Sahasrabudhe,P.C.Sharma,M.Sohoni,V.Subbarao,N.J.Sudarshan,V.K.Tandon,
N.Tomizawa, P.P.Varaiya, J.M.Vasi.

The friends mentioned below have critically read parts of the manuscript:
S.Batterywala, A.Diwan, N.Jayanthi, S.Patkar, P.G.Poonacha and the ’96 batch
students of the course ‘Advanced Network Analysis’. But for Shabbir Battery-
wala’s assistance (technical, editorial, software consultancy), publication of this
book would have been delayed by many months.
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Mr Z.A.Shirgaonkar has done the typing in Latex and Mr R.S.Patwardhan has
drawn the figures.

The writing of this book was supported by a grant (HN/EE/TXT/95) from the
C.D.P., I.I.T. Bombay.

The author is grateful to his mother Lalitha Iyer, wife Jayanthi and son Hari for
their continued encouragement and support.



Note to the Reader

This book appears too long because of two reasons:

e it is meant for self study - so contains a large number of exercises and problems
with solutions.

e it is aimed at three different types of readers:

— Electrical engineers interested in topological methods of network analy-
sis.

— Engineers interested in submodular function theory

— Researchers interested in the link between electrical networks and sub-
modular functions.

To shorten the book for oneself it is not necessary to take recourse to drastic physical
measures. During first reading all starred sections, starred exercises and problems
may be omitted. If the reader belongs to the first two categories mentioned above,
she would already find that only about two hundred pages have to be read.

Sections, exercises and problems have been starred to indicate that they are not
necessary for a first reading. Length of the solution is a fair indicator of the level
of difficulty of a problem - star does not indicate level of difficulty. There are only
a handful of routine (drill type) exercises. Most of the others require some effort.
Usually the problems are harder than the exercises.

Many of the results, exercises, problems etc. in this book are well known but
cannot easily be credited to any one author. Such results are marked with a ‘(k)’.

Electrical Engineers interested in topological methods

Such readers should first brush up on linear algebra (say first two chapters of the
book by Hoffman and Kunze [Hoffman+Kunze72]), read a bit of graph theory (say
the chapter on Kirchhoff’s laws in the book by Chua et al [Chua+Desoer+Kuh87)
and the first four chapters of the book by Narsingh Deo [Narsingh Deo74]) and then
read chapters 2 to 8. The chapter on graphs contains material on contraction and
restriction which is not easily available in textbooks on circuit theory, but which
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xii

is essential for an understanding of subsequent chapters. So this chapter should be
read carefully, particularly since it is written tersely. The chapter on matroids is
optional. The chapter on electrical networks should be easy reading but scanning
it is essential since it fixes some notation used subsequently and also because it
contains material motivating subsequent chapters, e.g. multiport decomposition.
The next three chapters contain whatever the book has to say on topological network
analysis.

Engineers interested in submodular functions

Such readers should read Chapters 2 to 4 and Chapters 9 to 13 and the first four
sections of Chapter 14. If the reader is not interested in matroids he may skip
material (chapters, sections, exercises, examples) dealing with them without serious
loss of continuity. This would mean he would have to be satisfied with bipartite
graph based instances of the general theory. The key chapter for such a reader is
Chapter 9. This is tersely written-so should be gone through carefully.

Researchers interested in the link between submodular functions and
electrical networks

The key chapter for such a reader is Chapter 14. To read the first four sections of
this chapter the reader has to be familiar with Chapters 5, 6, 7 from the electrical
networks part and the unstarred sections of the chapters on submodular functions.
If he has some prior familiarity with submodular functions and electrical networks
it is possible to directly begin reading the chapter picking up the required results
on submodular functions as and when they are referred to in the text. To read the
last section of the chapter, familiarity with Chapter 8 is required.

Comments on Notation

Sometimes, instead of numbering equations, key statements etc., we have marked
them with symbols such as (x), (*x),(y/). These marks are used over and over
again and have validity only within a local area such as a paragraph, a proof or the
solution to a problem.

In some cases, where there is no room for confusion, the same symbol denotes
different objects. For instance, usually B denotes a bipartite graph. But in Chapter
4, B denotes a base of a matroid- elsewhere a base is always denoted by b. The
symbol E is used for the edge set of a graph, in particular a bipartite graph. But
E(X),X C V(G) denotes the set of edges with both endpoints within X, while
Ep(X),X C Vi, in the case of a bipartite graph, denotes the set of all vertices
adjacent only to vertices in X.

We have often used brackets to write two statements in one.
Example: We say that set X is contained in Y (properly contained in Y), if
every element of X is also a member of Y (every element of X is a member of Y
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and X #Y) and denote it by X CY(X CY).
This is to be read as the following two statements.

i. We say that set X is contained in Y, if every element of X is also a member
of Y and denote it by X C Y.

ii. We say that set X is properly contained in Y, if every element of X is a
member of Y and X # Y and denote it by X C Y.
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List of Commonly Used Symbols

Sets, Partitions, Partial Orders

{e1,€2,...,en} set whose elements are ey, es, ..., ey
{z;:1€I} set whose members are x;, 1 € I
(xi:tel) a family (used only in Chapters 2 and 11)

zeX element x belongs to set X
g X element x does not belong to set X
VrorVz for all elements x
dx there exists an element x
XCY set X is contained in set 'Y
XcvYy set X is properly contained in set Y
XUuY union of sets X and Y
XnyYy intersection of sets X and'Y
XWwY disjoint union of sets X and'Y
n
U X; union of the sets X;
i=1
n
+H X; disjoint union of the sets X;
i=1
X-Y set of elements in X but not in Y
X complement of X
XxY cartesian product of sets X and Y
XY direct sum of sets X and Y
94 collection of subsets of S
| X | size of the subset X
(P, X) preorder on P
(P, <) partial order on P
I1 partition I1
N partition that has N as a block and all
blocks except N as singletons
Px collection of all partitions of X
m<ir partition Il is finer than II'
mvIr finest partition coarser than both Il and IT'
MAT coarsest partition finer than both Il and II'
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Functions,Set Functions and Operations on Functions

fC)

f1Z(), f()on S
9f(X),g0 f(X)

(fi ® f2)()
frusm(:), £() on 2%,

FIX(), f(-) on 25
foX(:), f(-) on 2°
F4), £() on 28

F(), () on 25

Py, f(-) on 2

P{,f(:) on 2°

Vectors and Matrices

F.R,C, R,

Vs®Vr,SNT =0

Sfunction f(-)
restriction of f(:)to Z C S
9(f(X))
direct sum of functions fi(-) and fa(:)
fusion of f(-) relative to I
i.e., ffus.H(Xf)
= f( U T)&Xf Cll

TeX;
restriction of f(-) to2X, X C S
(usually called) restriction of f(-) to X
contraction of f(:) to X
foX(¥)= f((S-X)UY) - f(S—X)
contramodular dual of f(-)
FUX) = £(8) - f(S - X)
comodular dual of f(-)
(with respect to weight function a(-))
f1(X) = a(X) = (f(S) - f(S - X))
polyhedron associated with f(-)
x € Py iff o(X) < f(X) VX CS
dual polyhedron associated with f(-)
x € P{iff z(X)> f(X) VXCS

field F, real field, complex field,

set of nonnegative reals

summation of elements x;

vector f

vector space V

vector space complementary orthogonal to V
direct sum of x; and xy (vector obtained by
adjoining components of vectors x; and x3)
direct sum of Vg and Vr (obtained by
collecting all possible direct sums of vectors
in Vs and V)
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dim(V),r(V)
dw,V")
AG,j)

AT

Al
<f,g>
R(A)

C(A)

det(A)

Graphs and Vector Spaces

g
V(G)
E(G)

h o Sh

L(e, f)
B(e, f)
r(9)
v(G)
GopenT

GshortT

G-T

GxT

dimension of vector space V
r(V+ V) —r(VnV)

i, " entry of matriz A
transpose of matriz A
inverse of matriz A

dot product of vectors f, g
row space of A

column space of A

determinant of A

graph G

vertex set.of G

edge set of G

a tree

a forest

cotree (E(G) —t) of G

coforest (E(G) — f) of G

f — circuit of e with respect to f

f — cutset of e with respect to f

rank of G (= number of edges in a
forest of G)

nullity of G (= number of edges in a
coforest of G)

graph obtained from G by opening and
removing edges T

graph obtained from G by shorting and
removing edges T

graph obtained from Gopen(E(G) —T) by
removing isolated vertices,

restriction of G toT

graph obtained from Gshort(E(G) —T') by
removing isolated vertices,

contraction of G to T



KVL
Vi(G)
Vu(G)
V.-T
VxT
&(T) for vV

Flow Graphs

F(G) = (G,c,s,t)

(A, B)
c(A, B)
f(4,B)

If]
F(B, CL,CR)

xvii

Gy 18 2 — isomorphic to Gy

r(G-T)

v(G xT)

hypergraph H

bipartite graph with left vertex set Vi,
right vertex set Vg and edge set E
(usually) incidence matriz

reduced incidence matrix

fundamental cutset matrix of forest f
fundamental circuit matrix of forest f
Kirchhof f's current equations
Kirchhof f's current Law

Kirchhof f's voltage equations
Kirchhof f's voltage Law

solution space of KCFE of G

solution space of KVE of G
restriction of vector space V to T

contraction of vector space V to T
r(V-T)—r(VxT)

flow graph on graph G with capacity
function ¢, source s, sink t

cut(A, B)

capacity of cut(A, B)

flow across cut(A,B), from Ato B

value of flow f

flowgraph associated with bipartite graph B
with source to left vertex capacity cr, right
vertex to sink capacity cr

and (left to right) bipartite graph edge capacity oo



xviii
Matroids

M= (S,7) matroid M
VA collection of independent sets
M™ dual of the matroid M
B (only in Chapter 4) base of a matroid
L(e, B) f —circuit of e with respect
to base B
B(e, B) f —bond of e with respect to base B
r(T) rank of the subset T in the given matroid
(M) rank of the underlying set of the matroid
v(T) rank of the subset T in the dual of the given matroid
v(M) rank of the underlying set in the dual matroid
M(G) polygon matroid of the graph G (bases
are forests)
M™(G) bond matroid of the graph G (bases
are coforests)
M(V) matroid whose bases are mazimal independent
columns of a representative matriz of V
M (V) dual of M(V)
[(X) span (closure) of the subset X in the matroid
M- T restriction of M toT
MxT contraction of M toT
MV M, union of matroids M; and M,

Electrical Networks

v voltage vector
i current vector
N electrical network

Nap electrical multiport with port set P and
remaining edge set A
set of voltage sources in the network

set of current sources in the network

N ™M

resistance, also collection of resistors or

‘current controlled voltage' elements in the network



