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Preface

The idea for this book came when I was an assistant at the Department of Mathe-
matics and Computer Science at the Philipps-University Marburg, Germany. Sev-
eral times I faced the task of supporting lectures and seminars on complex analysis
of several variables and found out that there are very few books on the subject,
compared to the vast amount of literature on function theory of one variable, let
alone on real variables or basic algebra. Even fewer books, to my understanding,
were written primarily with the student in mind. So it was quite hard to find sup-
porting examples and exercises that helped the student to become familiar with
the fascinating theory of several complex variables.

Of course, there are notable exceptions, like the books of R.M. Range [9] or
B. and L. Kaup [6], however, even those excellent books have a drawback: they
are quite thick and thus quite expensive for a student’s budget. So an additional
motivation to write this book was to give a comprehensive introduction to the
theory of several complex variables, illustrate it with as many examples as I could
find and help the student to get deeper insight by giving lots of exercises, reaching
from almost trivial to rather challenging.

There are not many illustrations in this book, in fact, there is exactly one,
because in the theory of several complex variables I find most of them either trivial
or misleading. The readers are of course free to have a different opinion on these
matters.

Exercises are spread throughout the text and their results will often be re-
ferred to, so it is highly recommended to work through them.

Above all, I wanted to keep the book short and affordable, recognizing that
this results in certain restrictions in the choice of contents. Critics may say that
I left out important topics like pseudoconvexity, complex spaces, analytic sheaves
or methods of cohomology theory. All of this is true, but inclusion of all that
would have resulted in another frighteningly thick book. So I chose topics that
assume only a minimum of prerequisites, i.e., holomorphic functions of one complex
variable, calculus of several real variables and basic algebra (vector spaces, groups,
rings etc.). Everything else is developed from scratch. I also tried to point out some
of the relations of complex analysis with other parts of mathematics. For example,
the Convergence Theorem of Weierstrass, that a compactly convergent sequence
of holomorphic functions has a holomorphic limit is formulated in the language of
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functional analysis: the algebra of holomorphic functions is a closed subalgebra of
the algebra of continuous functions in the compact-open topology.

Also the exercises do not restrict themselves only to topics of complex analysis
of several variables in order to show the student that learning the theory of several
complex variables is not working in an isolated ivory tower. Putting the knowledge
of different fields of mathematics together, I think, is one of the major joys of the
subject. Enjoy !

I would like to thank Dr. Thomas Hempfling of Birkhauser Publishing for
his friendly cooperation and his encouragement. Also, my thanks go to my wife
Claudia for her love and constant support. This book is for you!
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Chapter 1

Elementary theory of several
complex variables

In this chapter we study the n-dimensional complex vector space C™ and introduce
some notation used throughout this book. After recalling geometric and topolog-
ical notions such as connectedness or convexity we will introduce holomorphic
functions and mapping of several complex variables and prove the n-dimensional
analogues of several theorems well-known from the one-dimensional case. Through-
out this book n,m denote natural numbers (including zero). The set of strictly
positive naturals will be denoted by N, the set of strictly positive reals by R,.

1.1 Geometry of C"

The set C* = R™ +¢R" is the n-dimensional complex vector space consisting of all
vectors z = z+iy,where x,y € R™and i is the imaginary unit satisfying i> = —1.By
Z = x — 1y we denote the complex conjugate. C™ is endowed with the Euclidian
inner product

(2lw) ==Y zw; (1.1)
j=1

and the Euclidian norm
Izll == /(2]2). (1.2)
C" endowed with the inner product (1.1) is a complex Hilbert space and the
mapping
R™ x R" — C", (z,y) — z + 1y

is an isometry. Due to the isometry between C™ and R™ x R™ all metric and
topological notions of these spaces coincide.
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Remark 1.1.1. Let p € N be a natural number > 1. For z € C" the following
settings define norms on C™:

n
il = b

P

n
lzll, = | 3 1z
3=1

Illoo is called the mazimum norm, ||.||, is called the p- norm. All norms define
the same topology on C™. This is a consequence of the fact that, as we will show
now, in finite dimensional space all norms are equivalent.

Definition 1.1.2. Two norms N;, N2 on a vector space V are called equivalent, if
there are constants ¢,c¢’ > 0 such that

cN;y (z) < No(z) <Ny (z) for all z € V.

Proposition 1.1.3. On a finite-dimensional vector space V (over R or C) all norms
are equivalent.

Proof. It suffices to show that an arbitrary norm ||.|| on V is equivalent to the
Euclidian norm (1.2), because one shows easily that equivalence of norms is an
equivalence relation (Exercise !). Let {b1,...,b,} be a basis of V and put

M = max {||b1]|,. .-, ||ba]l}-

Letz eV, z= E;;l a;b; with coefficients a; € C. The triangle inequality and
Holder’s inequality yield

n
Izl < ) leyl llbsl]
i=1

=

1
n 2 n
2 2
> oyl > lIbsl
=1 §=1

<
< el vnM.
Every norm is a continuous mapping, because |||z| — [ly||| < ||z — y||, hence, |||

attains a minimum s > 0 on the compact unit sphere
S:={zeV||el,=1}.

S is compact by the Heine-Borel Theorem, because dim V' < co. Since 0 ¢ S the
identity property of a norm, i.e. that ||z|| = 0 if and only if z = 0, implies that

s > 0. For every z # 0 we have
T

1]l

€S,
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which implies

>s>0.

llzll,
This is equivalent to |[z|| > s||z||,. Putting both estimates together gives

sllzll; < llzll < vaM |zl ,
which shows the equivalence of ||.|| and ||.||, . O
Exercise 1.1.4. Give an alternative proof of Proposition 1.1.3 using the 1-norm.
Exercise 1.1.5. Show that limp_. ||2]|, = ||2]|, for all z € C™.

If we do not refer to a special norm, we will use the notation ||.|| for any norm
(not only p-norms).

Example 1.1.6. On infinite-dimensional vector spaces not all norms are equivalent.
Consider the infinite-dimensional real vector space C! [0, 1] of all real differentiable
functions on the interval [0,1]. Then we can define two norms by

[flloo == sup |f (2)]
0,1]

z€|
and
Ifller =1 flloo + 115 lloo -
The function f (z) := z", n € N, satisfies

Since n can be arbitrarily large, there is no constant ¢ > 0 such that

Ifller < ellflloo
for all f € C1[0,1].

Exercise 1.1.7. Show that C' [0,1] is a Banach space with respect to I-llc: » but
not with respect to ||| -

Let us recall some definitions.
Definition 1.1.8. Let E be a real vector space and z,y € E.
1. The closed segment [z,y] is the set

[z,y] ={tz+(1-t)y|0<t<1}.

2. The open segment |z, y] is the set

le,y[:=={tc+ (1 —-t)y|0<t < 1}.
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3. A subset C C E is called convez if [z,y] C C for all z,y € C.

4. Let M C V be an arbitrary subset. The convez hull conv (M) of M is the
intersection of all convex sets containing M.

5. An element z of a compact and convex set C is called an eztremal point of
C if the condition z € |y, z[ for some y, z € C implies that £ = y = 2. The
subset of extremal points of C is denoted by 8.;C.

Example 1.1.9. Let 7 > 0 and a € C™. The set
Bl(a):={z€C"| ||z—a| <r} (1.3)

is called the n-dimensional open ball with center a and radius r with respect to
the norm ||.|| . It is a convex set, since for all z,w € B, (a) and t € [0, 1] it follows
from the triangle inequality that

ltz+ L —t)w| <t|z| + QA —¢t)||w| <tr+(Q1—-t)r=r.

The closed ball is defined by replacing the < by < in (1.3).

Exercise 1.1.10. Show that the closed ball with respect to the p-norm coincides
with the topological closure of the open ball. Show that the closed ball is compact
and determine all its extremal points.

The open (closed) ball in C™ is a natural generalization of the open (closed)
disc in C. It is, however, not the only one.

Definition 1.1.11. We denote by R} the set of real vectors of strictly positive
components. Let r = (ry,...,r,) € R} and a € C™.

1. The set
Pl (a) :={z€C" |z —aj|<rj forall j=1,...,n}

is called the open polycylinder with center a and polyradius 7.
2. The set

T (a) :={2€C" |z —aj|=r; forall j=1,...,n}
is called the polytorus with center a and polyradius r. If r; = 1 for all j and
a = 0 it is called the unit polytorus and denoted T™.

Remark 1.1.12. The open polycylinder is another generalization of the one- dimen-
sional open disc, since it is the Cartesian product of n open discs in C.Therefore
we also use the expression polydisc. For n = 1, open polycylinder and open ball
coincide. P (a) is also convex.

Lemma 1.1.13. Let C be a convex subset of C™. Then C is simply connected.
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Proof. Let v : [0,1] — C be a closed curve. Then
H:[0,1] x [0,1] = C™,(s,t) — sy(0) + (1 —5) v (t)
defines a homotopy from 7 to -y (0) . Since C is convex we have
H(s,t)eC
for all s,t € [0,1]. a

As in the one-dimensional case, the notion of connectedness and of a domain
is important in several complex variables. We recall the definition for a general
topological space.

Definition 1.1.14. Let X be a topological space.

1. The space X is called connected, if X cannot be represented as the disjoint
union of two nonempty open subsets of X, i.e., if A, B are open subsets of
X,A#0,AnNB=0and X = AUB, then B =0.

2. An open and connected subset D C X is called a domain.

There are different equivalent characterizations of connected sets stated in
the following lemma.

Lemma 1.1.15. Let X be a topological space and D C X an open subset. The
following statements are equivalent:

1. The set D is a domain.
2. If A # 0 is a subset of D which is both open and closed, then A = D.
3. Every locally constant function f : D — C is constant.

Proof. 1. = 2. Let A be a nonempty subset of D which is both open and closed
in D. Put B := D\ A. Then B is open in D, for A is closed, AN B = § and
D = AU B. Since D is connected and A # () we conclude B = (), hence, A = D.
2. = 3. Letce D and A := f~1 ({f(c)}). In C, sets consisting of a single
point are closed (this holds for any Hausdorff space). f is continuous, because f is
locally constant, so A is closed in D.Since ¢ € A, the set A is nonempty. Let p € A.
Then there is an open neighbourhood U of p, such that f(z) = f(p) = f (c) for
allz € U, i.e., U C A. Thus, A is open. We conclude that A = D, so f is constant.
3. = 1. If D can be decomposed into disjoint open nonempty subsets A, B,
then
1, ze A

f:D_’C’z"’{ 0, 2€ B

defines a locally constant, yet not constant function O
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Remark 1.1.16. In the one-variable case the celebrated Riemann Mapping The-
orem states that all connected, simply connected domains in C are biholomor-
phically equivalent to either C or to the unit disc. This theorem is false in the
multivariable case. We will later show that even the two natural generalizations
of the unit disc, i.e., the unit ball and the unit polycylinder, are not biholomor-
phically equivalent. This is one example of the far-reaching differences between
complex analysis in one and in more than one variable.

Exercise 1.1.17. Let X be a topological space.

1.
2.

If A,B C X, such that A C B C A and A is connected, then B is connected.

If X is connected and f : X — Y is a continuous mapping into some other
topological space Y, then f (X) is also connected.

The space X is called pathwise connected, if to every pair z,y € X there
exists a continuous curve
Yoyt [0,1] = X

with v, , (0) = z,7,, (1) = y. Show that a subset D of C" is a domain if
and only if D is open and pathwise connected. (Hint: You can use the fact
that real intervals are connected.)

If (U;) jes is a family of (pathwise) connected sets which satisfies

JjeJ

then (J,c; U; is (pathwise) connected.

. Show that for every R > 0 and every n > 1 the set C™ \ B% (0) is pathwise

connected.

Check the set
M = {zeC ‘ 0<Rez< 1,Imz=sin—1—}u[—z’,i]
Rez

for connectedness and pathwise connectedness.

Exercise 1.1.18. We identify the space M (n,n;C) of complex n X n matrices as a
topological space with C*” with the usual (metric) topology

L.
2.

3.

Show that the set GL,, (C) of invertible matrices is a domain in M (n,n;C).

Show that the set U, (C) of unitary matrices is compact and pathwise con-
nected.

Show that the set P, (C) of self-adjoint positive definite matrices is convex.

Exercise 1.1.19. Let C be a compact convex set.
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1. Show that
0e:C C OC.

2. Let P (a) be a compact polydisc in C™ and T, (a) the corresponding poly-
torus. Show that
ez P (a) =T (a).

Remark 1.1.20. By the celebrated Krein-Milman Theorem (see, e.g.,[11] Theorem
VII1.4.4) every compact convex subset C of a locally convex vector space possesses
extremal points. Moreover, C' can be reconstructed as the closed convex hull of its
subset of extremal points:

C = conv (8.;C)

Notation 1.1.21. In the following we will use the expression that some proposition
holds near a point a or near a set X if there is an open neighbourhood of a resp.
X on which it holds.

1.2 Holomorphic functions in several complex variables

1.2.1 Definition of a holomorphic function

Definition 1.2.1. Let U C C™ be an open subset, f : U - C™,a € U and ||.|| an
arbitrary norm in C™.

1. The function f is called complex differentiable at a, if for every € > 0 there
isad =4(g,a) > 0 and a C-linear mapping

Df(a):C"—C™,
such that for all z € U with ||z — a|| < § the inequality
If (2) = f(a) — Df (a) (z — @) < €|z —a

holds. If Df (a) exists, it is called the complez derivative of f in a.

2. The function f is called holomorphic on U, if f is complex differentiable at
alla e U.

3. The set
O(U,C") :={f:U — C™| f holomorphic}

is called the set of holomorphic mappings on U. If m = 1 we write
O (U):=0(U,0C)

and call this set the set of holomorphic functions on U.
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This definition is independent of the choice of a norm, since all norms on C™
are equivalent. The proofs of the following propositions are analogous to the real
variable case, so we can leave them out.

Proposition 1.2.2.
1. If f is C-differentiable in a, then f is continuous in a.
2. The derivative Df (a) is unique.
3. The set O (U,C™) is a C— vector space and

D (Af + pg) (a) = ADf (a) + pDg (a)
for all f,g € O(U,C™) and all \,u € C.
4. (Chain Rule) Let U c C™,V C C™ be open sets, a € U and

feOUV):={¢:U—V | ¢ holomorphic},
g€ O (V,CF). Then go f € O (U,C*) and

D(go f)(a) =Dg(f(a))oDf(a).
5. Let U C C™ be an open set. A mapping

f=0,-fm): U->C™

is holomorphic if and only if all components fi, ..., f,, are holomorphic func-
tions on U.

6. O(U) is a C— algebra. If f,g € O(U) and g(z) # 0 for all z € U, then
Leo).

Example 1.2.3. Let U C C™” be an open subset and f : U — C be a locally constant
function. Then f is holomorphic and Df (a) = 0 for all a € U.

Proof. Let a € U and € > 0. Since f is locally constant there is some § > 0, such
that f (2) = f (a) for all z € U with ||z — a|| < 6. Therefore

If () = f(a)l =0 <e|z—al

for all z € U with ||z —al| < 4, i.e., f is holomorphic with Df (a) = 0 for all
ael. ~ O

Example 1.2.4. For every k = 1,...,n the projection
pry : C" = C,(21,...,2n) — 2

is holomorphic and D pry (a) = e (the k-th canonical basis vector) for all a € C".
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Proof. Let € > 0 and a € C". Then
lpry (2) — pri (@) — (2 — alex)| =0 < €l|lz — af

for all z € C". O

Example 1.2.5. The complex subalgebra C [z1,. .., z,]| of O (C™) generated by the
constants and the projections is called the algebra of polynomials. Its elements are
sums of the form

Z ca2®

a€EN"

with ¢, # 0 only for finitely many ¢, € C, where for 2 € C" and a € N® we use
the notation

2% =211 s o¥

Qan
n *

The degree of a polynomial

p(z) = Z Caz®

n

ca=0 for almost all o

is defined as
degp:=max{a; +---+an | @ € N?, ¢, # 0}.
For example, the polynomial p (21, 22) := 2} + 2523 has degree 6. By convention the

zero polynomial has degree —o00.The following formulas for the degree are easily
verified:

deg (pq) degp + deggq,
deg(p+q) < max{degp,degq}.

Exercise 1.2.6. Show that for all z,w € C™ and all @ € N™ there exists a polynomial
q € Clz,w] of degree |a| := ||a||; such that

(z+w)* =2%+q(z,w).

Exercise 1.2.7. Show that the polynomial algebra C[z,...,2,] has no zero divi-
sors.

Exercise 1.2.8. Show that the zero set of a complex polynomial in n > 2 variables

is not compact in C". (Hint: Use the Fundamental Theorem of Algebra). Compare
this to the case n = 1.

Exercise 1.2.9. Show that every (affine) linear mapping L : C* — C™ is holomor-
phic. Compute DL (a) for all a € C™.

Exercise 1.2.10. Let Uy,...,U, be open sets in C and let f; : U; — C be holo-
morphic functions, j =1,...,n.



10 Chapter 1. Elementary theory of several complex variables

1. Show that U := U; x --- x U, is open in C".
2. Show that the functions

f:U—»C,(zl,...,zn)HHfj(zj)
j=1

and "
g:U—>C,(21,...,2n) — ij(zj)
j=1
are holomorphic on U.

1.2.2 Basic properties of holomorphic functions

We turn to the multidimensional analogues of some important theorems from the
one variable case. The basic tool to this end is the following observation.

Lemma 1.2.11. Let U C C" beopen,a € U, f € O(U),be C* and V 1=V, p,y :=
{teC|la+tbeU}. Then V is open in C, 0 € V and the function

ga,b:V_’CatHf(a-i_tb)

is holomorphic.

Proof. From a € U follows that 0 ¢ V. If b=0then V =C. Let b# 0. If to € V
then 29 := a+tob € U. Since U is open, there is some € > 0, such that B, (29) € U.
Put 2; := a + tb. Then

20 — zell = [[bll [to — t] < &
for all ¢ with |tg — t| < ﬂ'ZT[’ ie., Bﬁ" (to) C V. Since gq  is the composition of the
affine linear mapping ¢ — a + tb and the holomorphic function f, holomorphy of
ga b follows from the chain rule. O

Conclusion 1.2.12. We have analogues of the following results from the one-dimen-
sional theory.

1. Liouville’s Theorem: Every bounded holomorphic function
f:C"->C
is constant.

2. Identity Theorem: Let D C C" be a domain, a € D, f € O (D), such that
f =0 near a. Then f is the zero function.

3. Open Mapping Theorem: Let D C C" be a domain, U C D an open subset
and f € O(D) a non-constant function. Then f (U) is open, i.e., every

holomorphic function is an open mapping. In particular, f (D) is a domain
in C.



